CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
基本信息
- 批准号:2339353
- 负责人:
- 金额:$ 124.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
STEM education programs often utilize a longitudinal design to evaluate multiple treatment effects of interests, including the effect at a particular time, the average effect over time, and the change of the effect over time. A critical consideration when designing longitudinal studies is a power analysis that outlines the sample sizes needed to ensure a high probability of detecting important effects of interest. However, there are no guidelines or tutorials to help applied researchers conduct such power analyses. In addition, researchers usually plan their longitudinal studies under budget constraints and there is a lack of literature providing methods of calculating optimal sample sizes under such constraints. The purpose of this project is to develop a comprehensive statistical framework, software tools, illustrative examples, and training materials for the optimal design of longitudinal studies in STEM education. Specifically, the statistical theory, tools, and training developed by this work will be broadly applicable to longitudinal designs for STEM education programs, and other social programs in health science, psychology, and public policy. This project contributes to STEM education by estimating design parameters for outcomes commonly used in STEM education and illustrating design and analysis methods using data from prior longitudinal studies of STEM education programs.This project is designed to achieve four integrated research and education goals. First, the investigator will develop a statistical framework to guide the power analysis and optimal sample size planning for longitudinal experimental and quasi-experimental studies in STEM education using all currently available methods, and then compare their results to help researchers select the most appropriate design and analytic methods for their longitudinal studies. Next, the project will develop empirical estimates of the design parameters using data from ongoing and prior longitudinal studies with outcomes commonly used in STEM education. The research will execute the formulas in two new tools (i.e., PowerUpR-Growth and an R Shiny App) and develop accompanying software documentation. Finally, this project will develop illustrative examples, training materials, and workshops on the design and analysis of longitudinal STEM education programs. The statistical framework and tools have the potential to provide a more practical and flexible way to identify more efficient longitudinal designs and assist researchers in evaluating the long-term effects of their STEM education programs. The guidelines, examples, training materials, and workshops will be made publicly and freely accessible to diverse and broad groups of students, researchers, and practitioners across STEM education areas and disciplines. This is a Faculty Early Career Development Program project responsive to a National Science Foundation-wide activity that offers the most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education. This project is supported by NSF's EDU Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
STEM教育计划经常利用纵向设计来评估兴趣的多种治疗效果,包括在特定时间的效果,随着时间的推移的平均效果以及随着时间的推移效果的变化。设计纵向研究时的一个关键考虑是一个功率分析,概述了确保检测感兴趣的重要效果的高可能性所需的样本大小。但是,没有指南或教程可以帮助应用研究人员进行此类权力分析。此外,研究人员通常在预算限制下计划其纵向研究,并且缺乏文献提供了在此类约束下计算最佳样本量的方法。该项目的目的是开发一个全面的统计框架,软件工具,说明性示例和培训材料,以最佳设计STEM教育中的纵向研究。具体而言,这项工作开发的统计理论,工具和培训将广泛适用于STEM教育计划的纵向设计以及健康科学,心理学和公共政策中的其他社会计划。该项目通过估算STEM教育中常用的结果的设计参数来促进STEM教育,并使用先前的STEM教育计划纵向研究的数据来说明设计和分析方法。该项目旨在实现四个综合研究和教育目标。 首先,研究人员将开发一个统计框架,以指导使用所有当前可用方法的纵向实验和准实验研究的功率分析和最佳样本规划,然后比较其结果,以帮助研究人员为其纵向研究选择最合适的设计和分析方法。接下来,该项目将使用正在进行的和先前的纵向研究中的数据对设计参数进行经验估计,并在STEM教育中常用的结果。 该研究将以两种新工具(即PowerUpr-Growth和R Shiny应用程序)执行公式,并开发随附的软件文档。 最后,该项目将开发有关纵向STEM教育计划的设计和分析的说明性示例,培训材料和研讨会。统计框架和工具有可能提供更实用和灵活的方式来确定更有效的纵向设计,并帮助研究人员评估其STEM教育计划的长期影响。这些准则,示例,培训材料和讲习班将由STEM教育领域和学科的各种学生,研究人员和从业人员公开公开,可以自由访问。 这是一项教师早期职业发展计划项目项目,响应全国科学基金会范围的活动,该计划提供了最有声望的奖项,以支持早期职业教师,他们有可能在研究和教育中充当学术榜样。该项目得到了NSF的EDU核心研究(ECR)计划的支持。 ECR计划强调了基本的STEM教育研究,该研究在该领域产生了基础知识。投资是在重要的,广泛和持久的关键领域进行的:STEM学习和STEM学习环境,扩大了STEM的参与以及STEM劳动力的发展。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Li其他文献
Microbial community analysis of simultaneous ammonium removal and Fe3+ reduction at different influent ammonium concentrations
不同进水铵浓度下同时除铵和还原Fe3的微生物群落分析
- DOI:
10.1007/s00449-017-1811-1 - 发表时间:
2017-07 - 期刊:
- 影响因子:3.8
- 作者:
Su Jun Feng;Lian Ting Ting;Huang Ting Lin;Liang Dong Hui;Wei Li;Wang Wen Dong - 通讯作者:
Wang Wen Dong
Real-Time Air-to-Ground Data Communication Technology of Aeroengine Health Management System with Adaptive Rate in the Whole Airspace
全空域速率自适应航空发动机健康管理系统实时空地数据通信技术
- DOI:
10.1155/2021/9912574 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qiuying Yan;Wei Li;Li Jiacheng;Zhang Jie;Shengyi Liu;Zhe Wang;Liu Tong;Qian Chen;Hanlin Sheng - 通讯作者:
Hanlin Sheng
CFD analysis of flow pattern and power consumption for viscous fluids in in-line high shear mixers
对在线高剪切混合器中粘性流体的流型和功耗进行 CFD 分析
- DOI:
10.1016/j.cherd.2016.10.013 - 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Chen Zhang;Junjie Gu;Hongyun Qin;Qin Xu;Wei Li;Xiaoqiang Jia;Jinli Zhang - 通讯作者:
Jinli Zhang
EAKF-Based parameter optimization using a hybrid adaptive method
使用混合自适应方法的基于 EAKF 的参数优化
- DOI:
10.1175/mwr-d-22-0099.1 - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Cao Lige;Xinrong Wu;Guijun Han;Wei Li;Xiaobo Wu;Haowen Wu;Chaoliang Li;Yundong Li;Gongfu Zhou - 通讯作者:
Gongfu Zhou
Microstructure and properties of W–ZrC composites prepared by the displacive compensation of porosity (DCP) method
位移补偿孔隙率(DCP)法制备W-ZrC复合材料的组织与性能
- DOI:
10.1016/j.jallcom.2011.05.105 - 发表时间:
2011-08 - 期刊:
- 影响因子:6.2
- 作者:
Shouming Zhang;Song Wang;Wei Li;Yulin Zhu;Zhaohui Chen - 通讯作者:
Zhaohui Chen
Wei Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Li', 18)}}的其他基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 124.89万 - 项目类别:
Standard Grant
PFI-TT: A Smart Bipolar Surgical Device for Electrosurgery
PFI-TT:用于电外科的智能双极手术设备
- 批准号:
2329783 - 财政年份:2024
- 资助金额:
$ 124.89万 - 项目类别:
Continuing Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318662 - 财政年份:2023
- 资助金额:
$ 124.89万 - 项目类别:
Standard Grant
I-Corps: Smart window that helps to ensure a healthy indoor air quality
I-Corps:智能窗户有助于确保健康的室内空气质量
- 批准号:
2221915 - 财政年份:2022
- 资助金额:
$ 124.89万 - 项目类别:
Standard Grant
CCSS: Learning-Driven Scheduling and Communications in Edge-Assisted Battery-Free Wireless Sensor Networks
CCSS:边缘辅助无电池无线传感器网络中的学习驱动的调度和通信
- 批准号:
2011845 - 财政年份:2020
- 资助金额:
$ 124.89万 - 项目类别:
Standard Grant
NPIF DTP IAA ABC (2020): UBEL
NPIF DTP IAA ABC (2020):UBEL
- 批准号:
ES/V502339/1 - 财政年份:2020
- 资助金额:
$ 124.89万 - 项目类别:
Research Grant
Isolation and Identification of Heterogeneous Circulating Tumor Cells Using a Microchip with Hyperuniform Patterns
使用具有超均匀模式的微芯片分离和鉴定异质循环肿瘤细胞
- 批准号:
1935792 - 财政年份:2020
- 资助金额:
$ 124.89万 - 项目类别:
Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
- 批准号:
1915995 - 财政年份:2019
- 资助金额:
$ 124.89万 - 项目类别:
Continuing Grant
I-Corps: On-line Monitoring of a Tissue Welding Process
I-Corps:组织焊接过程的在线监控
- 批准号:
1904256 - 财政年份:2018
- 资助金额:
$ 124.89万 - 项目类别:
Standard Grant
Intellectual Migration Dynamics Between China and the U.S.
中美之间的智力移民动态
- 批准号:
1660526 - 财政年份:2017
- 资助金额:
$ 124.89万 - 项目类别:
Continuing Grant
相似国自然基金
统计力学中的数学物理方程
- 批准号:12371218
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
半监督下最优个性化治疗方案的统计推断
- 批准号:12301337
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脉冲二氧化碳电催化体系的非平衡统计动力学
- 批准号:22373090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
环境混合污染物的健康效应统计分析方法研究
- 批准号:82373690
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
大型复杂流数据的若干统计推断问题
- 批准号:12371274
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
CTSA Diversity Supplement - Vielot - Effectiveness of Recombinant Herpes Zoster Vaccine in Older U.S. Adults
CTSA 多样性补充 - Vielot - 重组带状疱疹疫苗对美国老年人的有效性
- 批准号:
10294412 - 财政年份:2021
- 资助金额:
$ 124.89万 - 项目类别:
Prognostic biomarkers for respiratory failure post hematopoietic cell transplantation
造血细胞移植后呼吸衰竭的预后生物标志物
- 批准号:
10688031 - 财政年份:2020
- 资助金额:
$ 124.89万 - 项目类别:
Prognostic biomarkers for respiratory failure post hematopoietic cell transplantation
造血细胞移植后呼吸衰竭的预后生物标志物
- 批准号:
10246522 - 财政年份:2020
- 资助金额:
$ 124.89万 - 项目类别:
1Florida Alzheimer's Disease Research Center Data Management and Statistical (DMS) Core
1佛罗里达阿尔茨海默病研究中心数据管理和统计 (DMS) 核心
- 批准号:
10663226 - 财政年份:2020
- 资助金额:
$ 124.89万 - 项目类别: