CAREER: Fast coherent and incoherent control of atomic ions in scalable platforms

职业:在可扩展平台中对原子离子进行快速相干和非相干控制

基本信息

  • 批准号:
    2338897
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

Individual ions immobilized in vacuum and precisely controlled with lasers constitute a leading platform for quantum computing (QC), simulation, and metrology. Current academic and industrial QC systems operating on up to a few tens of qubits are however far from the millions required for fault-tolerant universal QC, as may be required for practically useful quantum advantage. This scaling represents a challenge that will be met only with innovations in the basic physical techniques used for qubit control, and simultaneously the classical hardware interfacing with qubits. The proposed research will invent and experimentally explore physical methods for ion qubit control capable of overcoming fundamental limitations in speed and error of current approaches. Ion qubit control is generally performed with laser fields, typically assumed to be in spatial profiles essentially uniform over the atom's extent due to conventional implementations with free-space laser beams. This imposes serious limitations on a range of basic functionalities, compromising operation speeds, errors achievable, and physical architectures. Chip-integrated hardware platforms that the PI has pioneered facilitate scaling, and furthermore enable practical and stable delivery of tailored spatial field profiles, where fine spatial variations of the field profile can play a critical role in dynamics. The present work will explore new atom-light interactions enabled in these configurations, thereby opening a new frontier for quantum control in scalable atomic systems. The research immerses PhD and undergraduate researchers in ideas drawing deeply from both classical optics/photonics and quantum science, an intersection of broad and growing importance both in research and for industry workforce. Outreach involving active participation by local middle and high school students is planned. The proposed work explores how structured light fields can address the fundamental challenges in scaling trapped-ion quantum systems -- how can we reduce limiting operation times for both incoherent (laser cooling, readout) and coherent (quantum logic) operations, while further reducing limiting infidelities? Since this work leverages scalable hardware platforms and foundry-fabricated devices to address these questions, achieved advances will directly impact practical large-scale systems in development. Furthermore, the techniques pursued here will inform efforts in precision metrology and searches for new physics based on atomic spectroscopy, in which the PI is also actively involved in collaborations internationally. Key to the concepts proposed are the ability to tailor spatially structured light fields at the atom location with electric field gradients or curvatures along desired directions, but at nulls in the electric field and thus intensify itself. This allows for driving sideband transitions that couple to ion motion with suppressed off-resonant carrier excitation, or driving of particular desired electric quadrupole or octupole transitions with minimal off-resonant couplings. Integrated photonic delivery offers a route to design such delivered beams with high precision, and furthermore deliver the spatially varying profiles to atomic ions with the few nm-level stability required for realization of these concepts. Specific aims within this program include realization of Doppler laser cooling of ion motion 50x faster than current methods allow, fast and broadband cooling to the quantum ground state in novel proposed schemes utilizing tailored optical field profiles, probing of optical quadrupole transitions in higher-order Hermite-Gauss modes, and pursuit of integrated realization of multi-qubit logic with 10^-4 level error, all within a scalable optical platform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固定在真空中并由激光精确控制的单个离子构成了量子计算 (QC)、模拟和计量的领先平台。然而,当前运行在多达几十个量子位上的学术和工业QC系统距离容错通用QC所需的数百万个量子位还很远,而这可能是实际有用的量子优势所需要的。这种扩展代表了一个挑战,只有通过用于量子位控制的基本物理技术的创新以及同时与量子位连接的经典硬件才能解决这一挑战。拟议的研究将发明并通过实验探索离子量子位控制的物理方法,该方法能够克服当前方法在速度和误差方面的基本限制。离子量子位控制通常使用激光场来执行,由于使用自由空间激光束的常规实现,通常假设在原子范围内空间分布基本均匀。这对一系列基本功能造成了严重限制,影响了操作速度、可实现的错误和物理架构。 PI 率先推出的芯片集成硬件平台促进了扩展,此外还能够实际、稳定地交付定制的空间场轮廓,其中场轮廓的精细空间变化可以在动力学中发挥关键作用。目前的工作将探索在这些配置中实现的新的原子-光相互作用,从而为可扩展原子系统中的量子控制开辟新的前沿。这项研究让博士和本科生研究人员沉浸在深刻汲取经典光学/光子学和量子科学的思想中,这对研究和行业劳动力来说都是广泛且日益重要的交叉点。计划开展由当地初中生和高中生积极参与的外展活动。拟议的工作探讨了结构光场如何解决扩展俘获离子量子系统的基本挑战——我们如何减少非相干(激光冷却、读出)和相干(量子逻辑)操作的限制操作时间,同时进一步减少限制不忠?由于这项工作利用可扩展的硬件平台和代工厂制造的设备来解决这些问题,所取得的进步将直接影响开发中的实际大型系统。此外,这里所追求的技术将为精密计量和基于原子光谱学的新物理学的探索提供信息,PI也积极参与其中的国际合作。所提出概念的关键是能够在原子位置处定制空间结构光场,沿所需方向具有电场梯度或曲率,但在电场为零处,从而增强自身。这允许通过抑制非谐振载流子激励来驱动与离子运动耦合的边带跃迁,或者通过最小的非谐振耦合来驱动特定所需的电四极或八极跃迁。集成光子传输提供了一种高精度设计此类传输光束的途径,此外,还可以将空间变化的轮廓传输到原子离子,并具有实现这些概念所需的几纳米级稳定性。该计划的具体目标包括实现离子运动的多普勒激光冷却速度比当前方法快 50 倍、利用定制的光场分布在新颖的提议方案中快速宽带冷却到量子基态、探测高阶埃尔米特中的光学四极跃迁-高斯模式,以及对具有 10^-4 级误差的多量子位逻辑的集成实现的追求,所有这些都在可扩展的光学平台内。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karan Mehta其他文献

Visual Perception of Breast Free Flap Size Is Influenced by Radiation Changes of Surrounding Tissue
乳房游离皮瓣尺寸的视觉感知受到周围组织辐射变化的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yi;Fei Wang;Evan Rothchild;Nicolas Greige;Karan Mehta;K. Weichman;J. Ricci
  • 通讯作者:
    J. Ricci
Patient-Reported Satisfaction and Quality of Life in Postmastectomy Radiated Patients: A Comparison between Delayed and Delayed Immediate Autologous Breast Reconstruction in a Predominantly Minority Patient Population
患者报告的乳房切除术后放射患者的满意度和生活质量:延迟和延迟即刻自体乳房重建在主要少数患者群体中的比较
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    G. Kamel;David Nash;J. Jacobson;Robin Berk;Karan Mehta;T. Benacquista;Lawrence B. Draper;E. Garfein;K. Weichman
  • 通讯作者:
    K. Weichman

Karan Mehta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karan Mehta', 18)}}的其他基金

Hafnia-based platform for high-index visible and UV integrated photonics
基于 Hafnia 的高折射率可见光和紫外集成光子学平台
  • 批准号:
    2301389
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
保障和提升FAST主动反射面性能的关键力学问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于FAST和SKA先导阵搜索高银纬脉冲星并研究其垂直银盘分布
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Optical Coherent Control of Quantum Dot Spin for Ultra-Fast Quantum Information Processing
NSF-BSF:用于超快速量子信息处理的量子点旋转的光学相干控制
  • 批准号:
    1915375
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Probing electron acceleration by fast kinetic guide-field magnetic reconnection using coherent solar radio emissions
使用相干太阳射电发射通过快速动导场磁重联探测电子加速
  • 批准号:
    392211132
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grants
Concept design of X-ray CubeSats for observing fast spinning neutron stars as coherent GW emitters
用于观测快速旋转中子星作为相干引力波发射器的 X 射线立方体卫星的概念设计
  • 批准号:
    17K18776
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Broadband Spectral Interferometric Polarized Coherent anti-Stokes Raman Scattering - a non-linear approach to fast all-optical chemical fingerprinting
宽带光谱干涉偏振相干反斯托克斯拉曼散射 - 一种快速全光学化学指纹识别的非线性方法
  • 批准号:
    2188482
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Fast and high-resolution imaging method by fast phase-shifting self-interference digital holography
快速相移自干涉数字全息快速高分辨率成像方法
  • 批准号:
    16K04970
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了