CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces

职业:运动细菌在结构化液晶界面的界面行为

基本信息

  • 批准号:
    2338880
  • 负责人:
  • 金额:
    $ 60.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstractUnderstanding how bacteria interact with complex interfaces is crucial for unraveling the mysteries of microorganism life. These interfaces, where fluids meet, play a pivotal role in bacterial adaptation, nutrient gathering, and gas exchange, offering valuable insights into microorganisms' ability to thrive in diverse conditions. Unfortunately, the interactions of bacteria with these domains are poorly understood due to the technical challenges scientists face in studying complex materials. This research aims to advance our knowledge of how interfaces influence the movement of living microorganisms. The research team utilizes ordered materials called liquid crystals, characterized by properties between liquids and solids, as a model system to study how microorganisms interact with intricate environments. Leveraging the tunable features of liquid crystals, the team explores ways to engineer the interface properties, enhancing control over bacterial flows and structural states. This work carries promising technological prospects as it opens avenues for the development of new functional systems applicable across fields including biosensing, bioremediation, and disease treatment. In addition to the technological impacts, the project is integrated with educational and outreach plans that incorporate examples of soft materials to improve the teaching of physics to life science students, create opportunities for undergraduate students from underrepresented groups to experience research at an early stage, and make science enjoyable to the general public.Technical abstractActive materials are structured systems of interacting elements that propel motion and generate flows. The aspiration to regulate these flows has driven research efforts to develop functional systems applicable across various domains. This project addresses the challenge of establishing effective mechanisms to control flows in active materials. Mainly, it delves into exploring liquid crystal interfaces to govern the dynamic assembly of living active materials. The goal of this research is to deepen the understanding of how ordered materials influence the fundamental behaviors of active materials and how interfaces can be successfully designed to regulate flows within active entities. Self-propelled bacteria are utilized as a model system to investigate the impact of interfacial anisotropy and topological defects on the dynamics of active materials. Employing diverse microfabrication techniques, including lithography, 3D printing, and microfluidics, the team undertakes the confinement of liquid crystals and the engineering of their surface defects to direct the collective behavior of bacteria. The insights gained from this project contribute to the development of transformative applications with practical implications in diverse fields, especially those requiring the transformation of chaotic dynamics into useful work. The project also promotes educational opportunities by integrating education and research through the creation of opportunities for undergraduate students from nontraditional backgrounds to explore projects related to soft materials at an early stage, to prepare them for higher education and careers in STEM. In addition, the principal investigator is developing a distinct approach to improve the teaching of physics to life science students by implementing topics related to soft matter and elucidating the strong connections between physical concepts and biological systems. The insights and knowledge gained from understanding how active materials behave at complex fluid interfaces are also disseminated to general audiences through training modules and educational workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要了解细菌如何与复杂界面相互作用对于揭开微生物生命之谜至关重要。这些流体相遇的界面在细菌适应、营养物质收集和气体交换中发挥着关键作用,为了解微生物在不同条件下繁衍生息的能力提供了宝贵的见解。不幸的是,由于科学家在研究复杂材料时面临技术挑战,人们对细菌与这些领域的相互作用知之甚少。这项研究旨在增进我们对界面如何影响活微生物运动的了解。研究小组利用称为液晶的有序材料(其特性介于液体和固体之间)作为模型系统来研究微生物如何与复杂的环境相互作用。利用液晶的可调特性,该团队探索了设计界面特性的方法,增强了对细菌流动和结构状态的控制。这项工作具有广阔的技术前景,因为它为开发适用于生物传感、生物修复和疾病治疗等领域的新功能系统开辟了途径。除了技术影响之外,该项目还与教育和推广计划相结合,其中包含软材料的示例,以改善生命科学学生的物理教学,为代表性不足群体的本科生创造早期体验研究的机会,并让科学为公众带来乐趣。技术摘要活性材料是由相互作用的元素组成的结构化系统,可推动运动并产生流动。监管这些流动的愿望推动了研究工作,以开发适用于各个领域的功能系统。该项目解决了建立有效机制来控制活性材料流动的挑战。它主要致力于探索液晶界面来控制活性活性材料的动态组装。这项研究的目的是加深对有序材料如何影响活性材料的基本行为以及如何成功设计界面来调节活性实体内的流动的理解。利用自驱动细菌作为模型系统来研究界面各向异性和拓扑缺陷对活性材料动力学的影响。该团队采用光刻、3D 打印和微流体等多种微加工技术,对液晶进行限制并对其表面缺陷进行工程设计,以指导细菌的集体行为。从该项目中获得的见解有助于开发在不同领域具有实际意义的变革性应用程序,特别是那些需要将混沌动力学转化为有用工作的领域。该项目还通过为非传统背景的本科生创造早期探索与软材料相关项目的机会,将教育和研究相结合,从而促进教育机会,为他们接受高等教育和 STEM 职业做好准备。此外,首席研究员正在开发一种独特的方法,通过实施与软物质相关的主题并阐明物理概念与生物系统之间的紧密联系来改善生命科学学生的物理教学。通过了解活性材料在复杂流体界面上的行为而获得的见解和知识也通过培训模块和教育研讨会传播给普通受众。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohamed Amine Gharbi其他文献

Mohamed Amine Gharbi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于单侧J-积分的FRP-混凝土界面疲劳裂纹扩展行为表征
  • 批准号:
    12302240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于开式筒壳液压成形钢/铝层合板变形机理及界面演变行为
  • 批准号:
    52305402
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三氮杂环类农药在天然铁矿物界面的聚合转化行为与驱动机制
  • 批准号:
    42377384
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
尖晶石锰酸锂正极原位界面/结构强化及储锂行为研究
  • 批准号:
    22309207
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
范德华异质纳米管界面力学行为研究
  • 批准号:
    12302138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: The Role of Grain Boundary Character in Corrosion Behavior: Linking Atomic Scale Interfacial Structure to Precipitation and Failure Mechanisms
职业:晶界特征在腐蚀行为中的作用:将原子尺度界面结构与沉淀和失效机制联系起来
  • 批准号:
    1150807
  • 财政年份:
    2012
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
  • 批准号:
    7665381
  • 财政年份:
    2007
  • 资助金额:
    $ 60.15万
  • 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
  • 批准号:
    7341368
  • 财政年份:
    2007
  • 资助金额:
    $ 60.15万
  • 项目类别:
The University of Arizona Initiative for Minority Ph.D.
亚利桑那大学少数族裔博士倡议
  • 批准号:
    7198087
  • 财政年份:
    2001
  • 资助金额:
    $ 60.15万
  • 项目类别:
CAREER: The Behavior of Proteins at the Solid-Liquid Interface Monitored in situ with Infrared-Visible Sum Frequency Generation: Investigating the Role of Interfacial Water
职业:利用红外-可见光和频生成原位监测固-液界面蛋白质的行为:研究界面水的作用
  • 批准号:
    0094332
  • 财政年份:
    2001
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了