CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
基本信息
- 批准号:2338880
- 负责人:
- 金额:$ 60.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical abstractUnderstanding how bacteria interact with complex interfaces is crucial for unraveling the mysteries of microorganism life. These interfaces, where fluids meet, play a pivotal role in bacterial adaptation, nutrient gathering, and gas exchange, offering valuable insights into microorganisms' ability to thrive in diverse conditions. Unfortunately, the interactions of bacteria with these domains are poorly understood due to the technical challenges scientists face in studying complex materials. This research aims to advance our knowledge of how interfaces influence the movement of living microorganisms. The research team utilizes ordered materials called liquid crystals, characterized by properties between liquids and solids, as a model system to study how microorganisms interact with intricate environments. Leveraging the tunable features of liquid crystals, the team explores ways to engineer the interface properties, enhancing control over bacterial flows and structural states. This work carries promising technological prospects as it opens avenues for the development of new functional systems applicable across fields including biosensing, bioremediation, and disease treatment. In addition to the technological impacts, the project is integrated with educational and outreach plans that incorporate examples of soft materials to improve the teaching of physics to life science students, create opportunities for undergraduate students from underrepresented groups to experience research at an early stage, and make science enjoyable to the general public.Technical abstractActive materials are structured systems of interacting elements that propel motion and generate flows. The aspiration to regulate these flows has driven research efforts to develop functional systems applicable across various domains. This project addresses the challenge of establishing effective mechanisms to control flows in active materials. Mainly, it delves into exploring liquid crystal interfaces to govern the dynamic assembly of living active materials. The goal of this research is to deepen the understanding of how ordered materials influence the fundamental behaviors of active materials and how interfaces can be successfully designed to regulate flows within active entities. Self-propelled bacteria are utilized as a model system to investigate the impact of interfacial anisotropy and topological defects on the dynamics of active materials. Employing diverse microfabrication techniques, including lithography, 3D printing, and microfluidics, the team undertakes the confinement of liquid crystals and the engineering of their surface defects to direct the collective behavior of bacteria. The insights gained from this project contribute to the development of transformative applications with practical implications in diverse fields, especially those requiring the transformation of chaotic dynamics into useful work. The project also promotes educational opportunities by integrating education and research through the creation of opportunities for undergraduate students from nontraditional backgrounds to explore projects related to soft materials at an early stage, to prepare them for higher education and careers in STEM. In addition, the principal investigator is developing a distinct approach to improve the teaching of physics to life science students by implementing topics related to soft matter and elucidating the strong connections between physical concepts and biological systems. The insights and knowledge gained from understanding how active materials behave at complex fluid interfaces are also disseminated to general audiences through training modules and educational workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象理解细菌如何与复杂界面相互作用对于揭开微生物生命的奥秘至关重要。这些界面在液体相遇的地方,在细菌适应性,营养收集和气体交换中起着关键作用,提供了对微生物在各种条件下壮成长的能力的宝贵见解。不幸的是,由于科学家在研究复杂材料方面面临的技术挑战,细菌与这些领域的相互作用对这些领域的相互作用很少。这项研究旨在促进我们对接口如何影响生物微生物运动的了解。研究小组利用称为液晶的有序材料,其特征在于液体和固体之间的特性,作为一种模型系统来研究微生物如何与复杂的环境相互作用。该团队利用液晶的可调特征,探索了设计界面特性的方法,增强了对细菌流和结构状态的控制。这项工作具有有希望的技术前景,因为它为开发适用于跨领域的新功能系统的途径提供了途径,包括生物传感,生物修复和疾病治疗。除了技术影响外,该项目还与教育和外展计划融为一体,这些计划结合了软材料的例子,以改善物理学的教学对生命科学学生的教学,为来自代表性不足的小组的本科生创造机会,以在早期体验研究,并使科学享受科学的娱乐性,使公共公共公众愉快。技术抽象材料具有相互作用的互动元素的结构性元素,可以促进运动和生成元素的相互作用。调节这些流量的愿望促使研究工作,以开发适用于各个领域的功能系统。该项目应对建立有效机制控制活性材料流的有效机制的挑战。主要是,它研究了探索液晶界面以控制活性材料的动态组装。这项研究的目的是加深对有序材料如何影响活性材料的基本行为以及如何成功设计以调节活性实体中流量的界面的理解。自旋细菌被用作模型系统,以研究界面各向异性和拓扑缺陷对活性材料动力学的影响。该团队采用多种微型制动技术,包括光刻,3D打印和微流体,进行液晶的限制以及其表面缺陷的工程,以指导细菌的集体行为。该项目从该项目中获得的见解有助于发展变革性应用,并在不同领域具有实际含义,尤其是那些需要将混乱动态转化为有用工作的领域。该项目还通过为来自非传统背景的本科生创造机会融合教育和研究来促进教育机会,以在早期探索与软材料相关的项目,以便他们为STEM的高等教育和职业做好准备。此外,首席研究者正在开发一种独特的方法,通过实施与软物质有关的主题并阐明物理概念与生物系统之间的牢固联系,以改善生命科学专业学生的教学。从了解如何通过培训模块和教育研讨会将活动材料在复杂的流体界面上表现出来的洞察力和知识。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamed Amine Gharbi其他文献
Giant cell tumor of the cervical spine: A very uncommon cause for cervical spine compression
- DOI:
10.1016/j.radcr.2024.08.123 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Ghassen Gader;Mohamed Amine Gharbi;Wiem Mansour;Mohamed Badri;Ahmed Harbaoui;Ihsèn Zammel - 通讯作者:
Ihsèn Zammel
Neglected knee swelling: A case report of massive synovial chondromatosis
- DOI:
10.1016/j.ijscr.2024.110636 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Faten Limaiem;Mohamed Amine Gharbi;Ramzi Bouzidi - 通讯作者:
Ramzi Bouzidi
Desmoid-type fibromatosis in an uncommon location: A case report of shoulder involvement misdiagnosed as rhabdomyosarcoma
- DOI:
10.1016/j.ijscr.2024.110508 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Faten Limaiem;Mohamed Amine Gharbi;Nadia Boujelbene;Ramy Triki;Khaled Ben Romdhane;Ramzi Bouzidi - 通讯作者:
Ramzi Bouzidi
Mohamed Amine Gharbi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
- 批准号:52370026
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于生物油活化的橡胶颗粒-沥青界面行为及体系稳定性研究
- 批准号:52308430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多层级增强B4C/6082Al复合材料背压往复挤压-短时时效界面行为及服役性能提升机理研究
- 批准号:52375329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
智能柔性机械臂在轨动态目标捕获界面力学行为及接触感知响应规律
- 批准号:52305184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
缺陷对二维半导体/金属界面力学行为的影响及力电协同优化
- 批准号:12302133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: The Role of Grain Boundary Character in Corrosion Behavior: Linking Atomic Scale Interfacial Structure to Precipitation and Failure Mechanisms
职业:晶界特征在腐蚀行为中的作用:将原子尺度界面结构与沉淀和失效机制联系起来
- 批准号:
1150807 - 财政年份:2012
- 资助金额:
$ 60.15万 - 项目类别:
Standard Grant
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
- 批准号:
7665381 - 财政年份:2007
- 资助金额:
$ 60.15万 - 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
- 批准号:
7341368 - 财政年份:2007
- 资助金额:
$ 60.15万 - 项目类别:
The University of Arizona Initiative for Minority Ph.D.
亚利桑那大学少数族裔博士倡议
- 批准号:
7198087 - 财政年份:2001
- 资助金额:
$ 60.15万 - 项目类别:
CAREER: The Behavior of Proteins at the Solid-Liquid Interface Monitored in situ with Infrared-Visible Sum Frequency Generation: Investigating the Role of Interfacial Water
职业:利用红外-可见光和频生成原位监测固-液界面蛋白质的行为:研究界面水的作用
- 批准号:
0094332 - 财政年份:2001
- 资助金额:
$ 60.15万 - 项目类别:
Standard Grant