III: Small: RUI: A Fairness Auditing Framework for Predictive Mobility Models

III:小:RUI:预测移动模型的公平性审核框架

基本信息

  • 批准号:
    2304213
  • 负责人:
  • 金额:
    $ 55.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Recent years have seen an increase in the use of location data collected from devices with GPS as well as location-based social media. This type of location data can be used for various decision-making purposes in the context of urban computing and city planning. For instance, in the context of traffic management and crowd flow, location data has been shown to provide immense opportunities for understanding and predicting visitation and congestion patterns, thus helping managers to plan resources accordingly. For a long time, privacy concerns about location data have received attention from the research community. Decades of research have been examining how to strip sensitive information from location data to block the re-identification of individuals. The success of these efforts has led to new opportunities for integrating predictive and generative models that are based on historical location data into decision-making tasks. However, a critical concern that arises is the extent to which such models and analyses are representative of everyone, fair, and equitable. Ultimately, the goal of this research is to ensure that such models and underlying data are both private and fair.This project aims to define a set of methods and approaches for auditing location predictive and generative models in terms of fairness from the perspectives of individual and collective level (i.e., crowd flow) location data. At its core, this project will advocate a novel framework for auditing the fairness of mobility traces and models in both centralized and distributed systems by offering a set of domain-specific fairness metrics related to mobility. The technical aim of this project is in two research thrusts. The first thrust focuses on building infrastructure, knowledge, and methods for the creation of spatial-temporal data through fair-aware generative AI models that are inclusive and can lead to fair and equitable policy planning. The second thrust focuses on building infrastructure, knowledge, and methods for increasing and evaluating the fairness of Location Privacy Preserving Methods (LPPMs) by offering a set of novel fair-aware algorithms that will satisfy the objectives of prediction accuracy, privacy, and fairness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,从带有 GPS 的设备以及基于位置的社交媒体收集的位置数据的使用有所增加。此类位置数据可用于城市计算和城市规划背景下的各种决策目的。例如,在交通管理和人群流动的背景下,位置数据已被证明可以为理解和预测访问和拥堵模式提供巨大的机会,从而帮助管理人员相应地规划资源。长期以来,位置数据的隐私问题一直受到研究界的关注。数十年的研究一直在研究如何从位置数据中剥离敏感信息以阻止个人的重新识别。这些努力的成功带来了将基于历史位置数据的预测和生成模型集成到决策任务中的新机会。然而,出现的一个关键问题是这些模型和分析在多大程度上代表每个人、公平和公正。最终,本研究的目标是确保此类模型和底层数据既私密又公平。本项目旨在从个人和个体的角度定义一套公平性审核位置预测和生成模型的方法和途径。集体级别(即人群流量)位置数据。该项目的核心是倡导一种新颖的框架,通过提供一组与移动性相关的特定领域的公平性指标,来审计集中式和分布式系统中的移动性轨迹和模型的公平性。该项目的技术目标有两个研究重点。第一个重点是通过具有公平意识的生成人工智能模型构建时空数据创建的基础设施、知识和方法,这些模型具有包容性,可以带来公平和公正的政策规划。第二个重点是构建基础设施、知识和方法,通过提供一组新颖的公平感知算法来提高和评估位置隐私保护方法(LPPM)的公平性,以满足预测准确性、隐私和公平的目标。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Afra Mashhadi其他文献

Afra Mashhadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
  • 批准号:
    2401096
  • 财政年份:
    2023
  • 资助金额:
    $ 55.35万
  • 项目类别:
    Standard Grant
III: Small: RUI: Finding Best Representative Phylogenetic Tree Reconciliations
III:小:RUI:寻找最佳代表性系统发育树协调
  • 批准号:
    2231150
  • 财政年份:
    2022
  • 资助金额:
    $ 55.35万
  • 项目类别:
    Standard Grant
III: Small: RUI: Collaborative Research: Modeling Pre- and Post- Conditions for Understanding Events
III:小:RUI:协作研究:为理解事件建模前后条件
  • 批准号:
    2007128
  • 财政年份:
    2020
  • 资助金额:
    $ 55.35万
  • 项目类别:
    Interagency Agreement
III: Small: RUI: Scalable and Iterative Statistical Testing of Multiple Hypotheses on Massive Datasets
III:小型:RUI:海量数据集上多个假设的可扩展和迭代统计检验
  • 批准号:
    2006765
  • 财政年份:
    2020
  • 资助金额:
    $ 55.35万
  • 项目类别:
    Standard Grant
III: Small: RUI: Investigating Fragmentation Rules and Improving Metabolite Identification Using Graph Grammar and Statistical Methods
III:小:RUI:使用图语法和统计方法研究断裂规则并改进代谢物识别
  • 批准号:
    2053286
  • 财政年份:
    2020
  • 资助金额:
    $ 55.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了