Harnessing Magnonic Nonreciprocity Through Dissipation Engineering

通过耗散工程利用磁非互易性

基本信息

  • 批准号:
    2337713
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Energy dissipation resulting from the interaction of a system with its environment has been traditionally viewed solely as a foe that limits signal lifetimes. However, the advent of new theories has reshaped our perspective on it and enabled novel engineering approaches to utilize dissipation as an important resource for manipulating the behaviors of a given system. Despite its rapid advancements in photonic and electronic circuits, dissipation engineering remains primarily a theoretical pursuit in magnonic and hybrid magnonic systems where information is carried by magnons – the elementary collective spin excitations. In particular, the experimental exploration of unique dissipation phenomena intertwined with nonreciprocity, such as robust mode conversion and the non-Hermitian skin effect, is still in its infancy, lacking well-designed experiments and a clear path toward practical applications. This project will investigate the basic principles of dissipations in magnonic systems and engineering approaches for manipulating dissipations. These endeavors will greatly enhance the fundamental comprehension of how dissipation functions within magnonic systems, leading to advancements in practical applications such as nonreciprocal information processing. The project will provide extensive mentoring and training opportunities for undergraduate and graduate students, and moreover, a new course curriculum will be introduced for undergraduate students, creating new opportunities for underrepresented high school student groups and K-12 students to immerse themselves in science and participate in research.This project aims to harness nonreciprocity by leveraging dissipation engineering in hybrid magnonic systems. Through theory-guided experimental efforts, strongly coupled microwave photon-magnon systems will be explored in three parallel thrusts: Thrust 1 will focus on the proof-of-principle demonstration of mode conversion between two magnon modes in hybrid magnonic systems, which is protected by the topology of the system and thus highly robust. This will be achieved in the time domain using pulsed operations. Thrust 2 will investigate the topological mode conversion between a magnon and a microwave photon mode, which will be implemented in the space domain under continuous wave operation. Thrust 3 will demonstrate the emergence of the skin effect in a hybrid magnonic system that is enabled by dissipative coupling. This research will provide insights for a series of fundamental questions related to the dissipation of magnetic systems, the dynamics of encircling singularity points, the relation between the non-Hermitian skin effect and nonreciprocal transport, and the role of the nonlinearities that are naturally built in the magnetization dynamics. The research outcome will pave the way for leveraging the unique non-Hermitian properties of hybrid magnonics across various applications, ranging from neuromorphic computing to magnon-based logic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,由于系统与环境的相互作用而产生的能量耗散仅是限制信号寿命的敌人。但是,新理论的冒险已经重塑了我们对它的看法,并使新颖的工程方法利用耗散作为操纵给定系统行为的重要资源。尽管在光子和电子电路方面取得了迅速的进步,但耗散工程仍主要是在宏伟和混合磁系统中的理论追求,在这些系统中,磁铁(基本集体旋转兴奋)传递了信息。特别是,对独特的耗散现象与非事物交织在一起的实验探索,例如健壮的模式转化和非富裕皮肤效应,仍处于起步阶段,缺乏精心设计的实验和通往实际应用的清晰路径。该项目将研究磁系统和工程方法中的耗散原理,以操纵耗散。这些努力将极大地增强对磁系统中耗散功能的基本理解,从而导致实际应用中的进步,例如非重点信息处理。 The project will provide extensive mentaling and training opportunities for undergraduate and graduate students, and moreover, a new course curriculum will be introduced for undergraduate students, creating new opportunities for underrepresented high school Student groups and K-12 students to immerse themselves in science and participation in research.This project aims to harness nonreciprocity by leveraging dissipation engineering in hybrid magnetic systems.通过理论指导的实验努力,将以三个平行的推力探索强耦合的微波光子 - 磁通系统:推力1将集中在混合磁系统中两个镁模式之间的模式转换的原理证明证明,该模式转换,该模式受系统拓扑的保护,从而受到了强大的稳健性。这将在时间域中使用脉冲操作来实现。推力2将研究磁化和微波光子模式之间的拓扑模式转换,该模式将在连续波动操作下在空间域中实现。推力3将证明通过耗散耦合启用的混合磁系统中皮肤效应的出现。这项研究将为一系列与磁系统的耗散,环绕奇异点的动态,非富米特皮肤效应和非偏置运输之间的关系以及自然在磁动力学中自然构建的非线性作用的关系提供见解。研究结果将为利用各种应用程序中混合磁化的独特非富特性属性铺平道路,从神经形态计算到基于木元的逻辑系统。该奖项反映了NSF的法定任务,并且我们是否通过使用该基金会的知识分子优点和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xufeng Zhang其他文献

Effect of TiO2 on crystallization and mechanical properties of MgO–Al2O3–SiO2 glasses containing P2O5
TiO2对含P2O5 MgO·Al2O3·SiO2玻璃结晶及力学性能的影响
  • DOI:
    10.1016/j.ceramint.2022.12.110
  • 发表时间:
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xufeng Zhang;Huidan Zeng;Xin Wang;Weichang Li;Lili Hu;Shubin Chen
  • 通讯作者:
    Shubin Chen
Thoreau: a fully-buried wireless underground sensor network in an urban environment
Number and Station of Lymph Node Metastasis After Curative-intent Resection of Intrahepatic Cholangiocarcinoma rognosis Impact P
肝内胆管癌根治性切除术后淋巴结转移的数量和部位对预后的影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xufeng Zhang;F. Xue;Ding;Matthew J. Weiss;I. Popescu;H. Marques;L. Aldrighetti;S. Maithel;C. Pulitano;W. Bauer;Feng Shen;G. Poultsides;O. Soubrane;G. Martel;B. Koerkamp;E. Itaru;Yi Lv;T. Pawlik
  • 通讯作者:
    T. Pawlik
Image decomposition model combined with sparse representation and total variation
稀疏表示和全变分相结合的图像分解模型
Discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) and analogs as small molecule Nav1.7/ Nav1.8 blockers for the treatment of pain.
发现 (R)-(3-氟吡咯烷-1-基)(6-((5-(三氟甲基)吡啶-2-基)氧基)喹啉-2-基)甲酮 (ABBV-318) 和小分子类似物
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Meena V Patel;H. M. Peltier;M. Matulenko;J. R. Koenig;Marc J. C. Scanio;R. Gum;O. El;Meagan M. Fricano;G. Lundgaard;T. Neelands;Xufeng Zhang;Cenchen Zhan;M. Pai;N. Ghoreishi;T. Hudzik;G. Gintant;R. Martin;S. McGaraughty;Jun;Daniel A. J. Bow;J. C. Kalvass;P. Kym;D. DeGoey;M. Kort
  • 通讯作者:
    M. Kort

Xufeng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

镁铁质碱性岩浆上升的岩浆通道系统及时间尺度—来自藏南赛利普钾质—超钾质火山岩扩散年代学的约束
  • 批准号:
    42372067
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于ROS响应的MOF缓释镁离子延缓间充质干细胞衰老促进老年骨缺损修复的研究
  • 批准号:
    82302676
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
镁质胶凝材料水化、改性与劣化的热力学和动力学机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
铝镁复合热还原制备均质高致密钨铜中微纳米钨颗粒调控机制
  • 批准号:
    52204359
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
镁质胶凝材料水化、改性与劣化的热力学和动力学机理研究
  • 批准号:
    52278246
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
  • 批准号:
    EP/Y003276/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
  • 批准号:
    2339475
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Creation of a new-principle inductor "magnonic inductor" by magnetic excitation of magnetic insulators
通过磁绝缘体磁激励创建新原理电感器“磁振子电感器”
  • 批准号:
    23K17882
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Active antiferromagnetic materials for hosting hybrid magnonic functionalities
用于承载混合磁波函数的活性反铁磁材料
  • 批准号:
    2328787
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了