Harnessing Magnonic Nonreciprocity Through Dissipation Engineering

通过耗散工程利用磁非互易性

基本信息

  • 批准号:
    2337713
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Energy dissipation resulting from the interaction of a system with its environment has been traditionally viewed solely as a foe that limits signal lifetimes. However, the advent of new theories has reshaped our perspective on it and enabled novel engineering approaches to utilize dissipation as an important resource for manipulating the behaviors of a given system. Despite its rapid advancements in photonic and electronic circuits, dissipation engineering remains primarily a theoretical pursuit in magnonic and hybrid magnonic systems where information is carried by magnons – the elementary collective spin excitations. In particular, the experimental exploration of unique dissipation phenomena intertwined with nonreciprocity, such as robust mode conversion and the non-Hermitian skin effect, is still in its infancy, lacking well-designed experiments and a clear path toward practical applications. This project will investigate the basic principles of dissipations in magnonic systems and engineering approaches for manipulating dissipations. These endeavors will greatly enhance the fundamental comprehension of how dissipation functions within magnonic systems, leading to advancements in practical applications such as nonreciprocal information processing. The project will provide extensive mentoring and training opportunities for undergraduate and graduate students, and moreover, a new course curriculum will be introduced for undergraduate students, creating new opportunities for underrepresented high school student groups and K-12 students to immerse themselves in science and participate in research.This project aims to harness nonreciprocity by leveraging dissipation engineering in hybrid magnonic systems. Through theory-guided experimental efforts, strongly coupled microwave photon-magnon systems will be explored in three parallel thrusts: Thrust 1 will focus on the proof-of-principle demonstration of mode conversion between two magnon modes in hybrid magnonic systems, which is protected by the topology of the system and thus highly robust. This will be achieved in the time domain using pulsed operations. Thrust 2 will investigate the topological mode conversion between a magnon and a microwave photon mode, which will be implemented in the space domain under continuous wave operation. Thrust 3 will demonstrate the emergence of the skin effect in a hybrid magnonic system that is enabled by dissipative coupling. This research will provide insights for a series of fundamental questions related to the dissipation of magnetic systems, the dynamics of encircling singularity points, the relation between the non-Hermitian skin effect and nonreciprocal transport, and the role of the nonlinearities that are naturally built in the magnetization dynamics. The research outcome will pave the way for leveraging the unique non-Hermitian properties of hybrid magnonics across various applications, ranging from neuromorphic computing to magnon-based logic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,系统与其环境相互作用产生的能量耗散被仅仅视为限制信号寿命的敌人,然而,新理论的出现重塑了我们对此的看法,并使新的工程方法能够将耗散作为一种重要的资源。尽管耗散工程在光子和电子电路方面取得了快速进展,但它仍然主要是磁子和混合磁子系统中的理论追求,其中信息由磁振子(基本集体自旋)携带。特别是,对与非互易性交织在一起的独特耗散现象(例如鲁棒模式转换和非厄米趋肤效应)的实验探索仍处于起步阶段,缺乏精心设计的实验和通往实际应用的明确路径。将研究磁波系统中耗散的基本原理和操纵耗散的工程方法,这些努力将极大地增强对波波系统中耗散如何起作用的基本理解。该项目将为本科生和研究生提供广泛的指导和培训机会,此外,还将为本科生引入新的课程,为代表性不足的高中生群体和 K 创造新的机会。 -12 名学生沉浸在科学中并参与研究。该项目旨在通过理论指导的实验工作、耦合微波光子-磁振子系统,利用混合磁子系统中的耗散工程来强有力地利用非互易性。将在三个并行的推力中进行探索:推力 1 将重点关注混合磁振子系统中两种磁振子模式之间的模式转换的原理验证演示,该转换受到系统拓扑的保护,因此将实现高度鲁棒性。 Thrust 2 将研究磁振子和微波光子模式之间的拓扑模式转换,而 Thrust 3 将在连续波操作下在空间域中实现。这项研究将为一系列与磁系统耗散、环绕奇点动力学、非厄米趋肤效应和非互易之间的关系相关的基本问题提供见解。该研究成果将为在各种应用中利用混合磁子学的独特非厄米特性铺平道路。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xufeng Zhang其他文献

Number and Station of Lymph Node Metastasis After Curative-intent Resection of Intrahepatic Cholangiocarcinoma rognosis Impact P
肝内胆管癌根治性切除术后淋巴结转移的数量和部位对预后的影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xufeng Zhang;F. Xue;Ding;Matthew J. Weiss;I. Popescu;H. Marques;L. Aldrighetti;S. Maithel;C. Pulitano;W. Bauer;Feng Shen;G. Poultsides;O. Soubrane;G. Martel;B. Koerkamp;E. Itaru;Yi Lv;T. Pawlik
  • 通讯作者:
    T. Pawlik
Thoreau: a fully-buried wireless underground sensor network in an urban environment
Effect of TiO2 on crystallization and mechanical properties of MgO–Al2O3–SiO2 glasses containing P2O5
TiO2对含P2O5 MgO·Al2O3·SiO2玻璃结晶及力学性能的影响
  • DOI:
    10.1016/j.ceramint.2022.12.110
  • 发表时间:
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xufeng Zhang;Huidan Zeng;Xin Wang;Weichang Li;Lili Hu;Shubin Chen
  • 通讯作者:
    Shubin Chen
Image decomposition model combined with sparse representation and total variation
稀疏表示和全变分相结合的图像分解模型
span style=font-family:; roman,serif;font-size:10.5pt;= new= times=Three new sesquiterpene lactones from Inula britannica./span
来自不列颠旋覆花的三种新倍半萜内酯。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xufeng Zhang;Jing-Ling Du;Jie Ren;Feng-Mei Ye;Yang-Guo Xie;Xiang-Rong Cheng;Shi-Kai Yan;Huizi Jin
  • 通讯作者:
    Huizi Jin

Xufeng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

磁力与多体量子系统中的非高斯量子同步效应及其度量
  • 批准号:
    12304389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
经腔道适形介入的柔性机器人磁力定位操作技术研究
  • 批准号:
    62373248
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
宽带宽高灵敏度氦原子矢量磁力仪及其在生物磁探测中的应用
  • 批准号:
    62375002
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
低温液体泵用U型复合聚磁式超导磁力耦合器研究
  • 批准号:
    52307050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于原子磁力计的大脑临界性和动力学研究
  • 批准号:
    12304244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

地球流体力学および磁気流体力学の基礎方程式に対する数理解析
地球流体动力学和磁流体动力学基本方程的数学分析
  • 批准号:
    24KJ0138
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
磁気流体力学とダストの共進化が導く地球型惑星の水量進化
磁流体动力学和尘埃共同演化引导类地行星含水量的演化
  • 批准号:
    24KJ1059
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
水晶振動子のトリモーダル共振を用いた単一ナノ粒子の3軸ベクトル電磁気力分光
使用石英晶体振荡器的三峰共振对单个纳米颗粒进行三轴矢量电磁力谱分析
  • 批准号:
    24K08193
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
応力印加で機能発現する次世代センサ材料としてのトンネル磁気-誘電効果材料の創製
创建隧道磁电介质效应材料作为通过施加应力表现出功能的下一代传感器材料
  • 批准号:
    24KJ0362
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
高温超伝導バルク磁石の強力な静磁場勾配による拡散NMRと分子識別の試み
尝试在高温超导块体磁体中使用强静磁场梯度进行扩散核磁共振和分子识别
  • 批准号:
    24K01618
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了