I-Corps: AI for predicting polymer properties for biopolymer films
I-Corps:用于预测生物聚合物薄膜聚合物特性的人工智能
基本信息
- 批准号:2335930
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a software platform to predict the properties of renewable materials such as biopolymers. Amid rising environmental concerns, e-commerce leaders such as Amazon, Walmart, and H&M have committed to reducing plastic waste and carbon emissions by 2030. Achieving this goal may depend on sustainable packaging solutions that prioritize biodegradability over investment in recycling processes. In addition, cost considerations necessitate a focus on cost-effective production of biopolymers for packaging. The proposed technology provides a tool enabling the customization of the chemical behavior of biopolymers that may be used to create the technical performance specifications required for their applications. The proposed software platform may have the potential to impact multiple industries by enabling the discovery and prediction of renewable materials' properties including consumer electronics, energy storage, biofuels, food extraction, and pharmaceutical research.This I-Corps project is based on the development of simulator tailored to maximize sampling control, efficiency, and scalability in molecular dynamics simulations. The proposed model employs reinforcement learning control policies as an inductive bias, optimizing objective functions like generating specific conformations, which minimizes computational cost. Applied to the realm of polymer chains, the proposed technology has shown a 40% improvement in sampling efficiency over studied chemistry polymer chain conformations with a target radius of gyration, illustrating the power of machine learning control policies in optimizing complex simulations. The initial goal is to apply this model to packaging films made from biopolymers. Unlike similar technologies for property prediction, this model is physics-based, which means empirical data are not required, and it runs in conventional computers, making it accessible to a wider audience. RL-based control policies will be leveraged to explore the configuration space thoroughly to enhance control over the simulation's conformations for mechanical property prediction, which is a key aspect in designing effective packaging materials. The proposed technology may be used to predict and adjust specific properties of biopolymers, such as mechanical strength, flexibility, or chemical non-reactivity that are crucial for creating tailored packaging solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发软件平台,以预测可再生材料(例如生物聚合物)的性质。 在不断上升的环境问题之中,亚马逊,沃尔玛和H&M等电子商务领导者致力于在2030年之前减少塑料废物和碳排放。实现这一目标可能取决于可持续包装解决方案,这些解决方案优先考虑生物降解性,而不是在回收过程中投资而不是投资。此外,成本注意事项需要重点关注生物聚合物的成本效益用于包装。拟议的技术提供了一种工具,可以自定义生物聚合物的化学行为,这些工具可用于创建其应用所需的技术性能规范。提出的软件平台可能有可能通过启用可再生材料的特性的发现和预测,包括消费电子产品,储能,生物燃料,食品提取和制药研究。该I-Corps基于对Simplation量身定制的Simultator的开发,以最大程度地提高采样,效率控制,并缩放了Sconalectal Dynamelictials Mimalsicals。 所提出的模型将增强学习控制政策作为归纳偏见,优化了目标功能,例如生成特定构象,从而最大程度地减少了计算成本。该技术应用于聚合物链的领域,在研究化学性化学聚合物链构象构象构象上的采样效率提高了40%,这说明了机器学习控制策略在优化复杂模拟方面的力量。最初的目标是将该模型应用于由生物聚合物制成的包装膜。 与类似的物业预测技术不同,该模型基于物理学,这意味着不需要经验数据,并且在传统的计算机中运行,使得更广泛的受众访问。将利用基于RL的控制策略来彻底探索配置空间,以增强对机械属性预测的模拟构象的控制,这是设计有效包装材料的关键方面。 所提出的技术可用于预测和调整生物聚合物的特定特性,例如机械强度,柔韧性或化学无反应性,对于创建量身定制的包装解决方案至关重要。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识和更广泛影响的评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svafa Gronfeldt其他文献
The nature, impact and development of customer-oriented behaviour: A case study in an Icelandic service context.
以客户为导向的行为的性质、影响和发展:冰岛服务环境的案例研究。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Svafa Gronfeldt - 通讯作者:
Svafa Gronfeldt
Svafa Gronfeldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可解释AI框架下知识与数据协同驱动的ICU危重症亚型识别及预后预测方法研究
- 批准号:82372095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌肉影像人工智能分割及骨骼肌空间成像预测老年髋部骨折风险的研究
- 批准号:82371957
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于AI的Ⅱ型糖尿病药物响应预测和个体用药方案推荐研究
- 批准号:82373790
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
- 批准号:
BB/Z514305/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Adopting Green Solvents through Predicting Reaction Outcomes with AI/Machine Learning
通过人工智能/机器学习预测反应结果采用绿色溶剂
- 批准号:
EP/X021033/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Studentship
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
AI-powered predictive maintenance for people - Tracking and predicting risk of human error to improve productivity
人工智能驱动的人员预测维护 - 跟踪和预测人为错误的风险以提高生产力
- 批准号:
10077721 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D