Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
基本信息
- 批准号:2302087
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many phenomena in sciences, specially in mathematics and physics, can be described by noncommuting variables, that is, the product XY of two variables X and Y may not equal to the product YX in the opposite order. A noncommutative algebra is a mathematical concept that encodes such a phenomenon, and the subject of noncommutative algebra naturally has many applications in quantum mechanics, quantum field theory, string theory, and so on. The study of noncommutativity has become more and more common in modern science and technology. For example, a quantum group is equivalent to a Hopf algebra whose underlying algebraic structure is noncommutative and/or whose underlying coalgebraic structure is noncocommutative. The study of noncommutative algebras is both important and challenging. In many cases, noncommutative algebras arise as noncommutative analogues and generalizations of classical objects coming from other fields such as commutative algebra, algebraic geometry, and Lie theory. To understand the structure of noncommutative algebras, the PI will investigate invariants that are defined by homological means. These invariants capture hidden structures and symmetries of noncommutative algebras. This research project combines ideas and methodology from several areas of mathematics such as algebraic geometry, commutative algebra, linear algebra, homological algebra, and combinatorics. The proposed research activities will make contributions to teaching, undergraduate and graduate student training, and outreach. A major part of the project concerns homological invariants such as Castelnuovo-Mumford regularity, Tor-regularity, and Artin-Schelter regularity for connected graded algebras. A weighted version of homological regularities with an extra parameter will also be introduced that incorporates different classical homological concepts. This is a new research direction in noncommutative algebra with connections to representation theory, noncommutative algebraic geometry, and noncommutative invariant theory. The PI will investigate and prove homological identities involving these invariants for connected graded algebras and their associated categories, and thus expand the foundations for this theory. One particular sub-project is the classification of non-Artin-Schelter regular algebras that are close to being Artin-Schelter regular. In addition this project concerns other active research topics in noncommutative algebra: the automorphism problem, the cancellation problem, operad theory, and noncommutative discriminants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学中的许多现象,特别是数学和物理中的现象,都可以用非交换变量来描述,即两个变量 X 和 Y 的乘积 XY 可能不等于相反顺序的乘积 YX。非交换代数是编码这种现象的数学概念,非交换代数学科自然在量子力学、量子场论、弦论等方面有很多应用。非交换性的研究在现代科学技术中变得越来越普遍。例如,量子群等价于其底层代数结构是非交换性的和/或其底层煤代数结构是非共交换的 Hopf 代数。非交换代数的研究既重要又具有挑战性。在许多情况下,非交换代数是作为来自其他领域(例如交换代数、代数几何和李理论)的经典对象的非交换类比和概括而出现的。为了理解非交换代数的结构,PI 将研究通过同调方法定义的不变量。这些不变量捕获了非交换代数的隐藏结构和对称性。该研究项目结合了代数几何、交换代数、线性代数、同调代数和组合数学等多个数学领域的思想和方法。拟议的研究活动将为教学、本科生和研究生培训以及推广做出贡献。该项目的主要部分涉及同调不变量,例如连通分级代数的 Castelnuovo-Mumford 正则、Tor 正则和 Artin-Schelter 正则。还将引入具有额外参数的同调规律的加权版本,其中结合了不同的经典同调概念。这是非交换代数的一个新研究方向,与表示论、非交换代数几何和非交换不变量理论相关。 PI 将研究并证明涉及连通分级代数及其相关类别的这些不变量的同调恒等式,从而扩展该理论的基础。一个特定的子项目是接近 Artin-Schelter 正则代数的非 Artin-Schelter 正则代数的分类。此外,该项目还涉及非交换代数中的其他活跃研究主题:自同构问题、取消问题、运算理论和非交换判别式。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的评估进行评估,认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Zhang其他文献
Novel emulsion-based delivery systems
新型乳液递送系统
- DOI:
10.1016/j.ultras.2011.05.014 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:4.2
- 作者:
Jian Zhang - 通讯作者:
Jian Zhang
Cisplatin given at three divided doses for three consecutive days in metastatic breast cancer: an alternative schedule for one full dose with comparable efficacy but less CINV and hypomagnesaemia
顺铂在转移性乳腺癌中连续三天分三次给药:一种全剂量的替代方案,具有相当的疗效,但 CINV 和低镁血症较少
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.8
- 作者:
Jinfeng Zhang;Mingxi Lin;Yizi Jin;Linhan Gu;Ting Li;Bao;Biyun Wang;Leiping Wang;Sheng Zhang;Jun Cao;Z. Tao;Jian Zhang;Xichun Hu - 通讯作者:
Xichun Hu
Identification of a New Microcystin-Degrading Bacterium Isolated from Lake Chaohu, China
从中国巢湖分离出一株新的微囊藻毒素降解细菌的鉴定
- DOI:
10.1007/s00128-015-1531-7 - 发表时间:
2015-03-29 - 期刊:
- 影响因子:2.7
- 作者:
Jian Zhang;Hui Shi;Aimin Liu;Zheng Cao;Jiasheng Hao;Ren - 通讯作者:
Ren
Dry-jet wet-spun PAN/MWCNT composite fibers with homogeneous structure and circular cross-section
结构均匀、圆形截面的干喷湿纺PAN/MWCNT复合纤维
- DOI:
10.1002/app.36317 - 发表时间:
2012-07-25 - 期刊:
- 影响因子:3
- 作者:
Jian Zhang;Youwei Zhang;Degang Zhang;Jiongxin Zhao - 通讯作者:
Jiongxin Zhao
Precipitating factors and 90‐day outcome of acute heart failure: a report from the intercontinental GREAT registry
急性心力衰竭的诱发因素和 90 天结果:来自洲际 GREAT 登记处的报告
- DOI:
10.1002/ejhf.682 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:18.2
- 作者:
M. Arrigo;E. Gayat;J. Parenica;S. Ishihara;Jian Zhang;D. Choi;Jin Joo Park;K. Alhabib;N. Sato;Ò. Miró;A. Maggioni;Yuhui Zhang;J. Špinar;A. Cohen;T. Iwashyna;A. Mebazaa - 通讯作者:
A. Mebazaa
Jian Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Zhang', 18)}}的其他基金
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
- 批准号:
EP/X038297/1 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NSF Showcase for DUE Projects at the ACM SIGCSE Symposium
NSF 在 ACM SIGCSE 研讨会上展示 DUE 项目
- 批准号:
2245139 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Realistic fault modelling to enable optimization of low power IoT and Cognitive fault-tolerant computing systems
现实故障建模可优化低功耗物联网和认知容错计算系统
- 批准号:
EP/T026022/1 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry
非交换代数与几何相互作用的最新进展和新方向
- 批准号:
1953148 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Recent Developments in Noncommutative Algebra and Related Areas
非交换代数及相关领域的最新进展
- 批准号:
1764210 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Spatial Skills and Success in Introductory Computing
协作研究:空间技能和入门计算的成功
- 批准号:
1711780 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Real Time Spectroscopic Studies of Hybrid MOF Photocatalysts for Solar Fuel Production
合作研究:用于太阳能燃料生产的混合 MOF 光催化剂的实时光谱研究
- 批准号:
1706632 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
- 批准号:
1700825 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
食品中不可交换氢的同位素分馏机理及掺假鉴别理论研究
- 批准号:31601553
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometric Insights in Noncommutative Algebra
非交换代数中的几何见解
- 批准号:
2201273 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Noncommutative Functions, Algebra and Operator Analysis
非交换函数、代数和算子分析
- 批准号:
2155033 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Women in Noncommutative Algebra and Representation Theory Workshop 3
非交换代数和表示论中的女性研讨会 3
- 批准号:
2203108 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Application of noncommutative algebraic structures to cryptology
非交换代数结构在密码学中的应用
- 批准号:
22K03397 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)