RUI: Volumes in tropical geometry

RUI:热带几何中的体积

基本信息

  • 批准号:
    2302024
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Throughout the last several decades, tropical geometry has emerged as an influential bridge between the disparate subjects of algebraic and discrete geometry. In essence, tropical geometry replaces geometric spaces modeled by nonlinear equations (a parabola or a sphere, for example) with geometric spaces modeled by linear equations (a line or a plane, for example). Crucially, this bridge runs in both directions, allowing one to study the rich structure of nonlinear spaces using linear and combinatorial techniques while also allowing one to import the deep geometric framework of algebraic geometry into the study of combinatorics. This project will build a new lane in this bridge that is centered around the classical concept of volume, with applications in both combinatorics and algebraic geometry. In addition to the intellectual and mathematical outcomes of this project, the principal investigator will use the line of research problems in this project as an avenue to train and support a diverse community of student researchers at his home institution of San Francisco State University, preparing them to succeed in PhD programs and research careers in the sciences. One of the most important ways in which volumes arise in algebraic geometry is through the study of divisors on algebraic varieties, which are fundamental objects for studying the defining equations of a variety. Given a divisor on a projective variety, there are at least two volume-theoretic interpretations for the degree of its top power: it is the volume of the associated compact Riemannian manifold, and it is the volume of the Newton-Okounkov body associated to the divisor. This project will develop parallels of these notions in tropical geometry by introducing volume-theoretic tools for studying divisors and intersection numbers on tropical varieties. Applications of the volume-theoretic tools introduced in this project include a new geometric understanding of recent influential results concerning log-concavity of characteristic polynomials of matroids, allowing one to generalize these log-concavity results to intersection numbers on a much larger class of tropical varieties than was accessible by previous approaches, as well as the development of new tropical methods for studying cones of divisors on tropical compactifications of algebraic varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,热带几何已成为代数和离散几何不同学科之间的一座有影响力的桥梁。本质上,热带几何用线性方程(例如直线或平面)建模的几何空间代替了非线性方程(例如抛物线或球体)建模的几何空间。至关重要的是,这座桥是双向的,允许人们使用线性和组合技术来研究非线性空间的丰富结构,同时也允许人们将代数几何的深层几何框架导入到组合学的研究中。该项目将在这座桥上建造一条新车道,该车道以经典体积概念为中心,并在组合数学和代数几何中得到应用。除了该项目的智力和数学成果外,首席研究员还将利用该项目中的研究问题作为培训和支持其所在机构旧金山州立大学的多元化学生研究人员社区的途径,为他们做好准备在博士学位课程和科学研究事业中取得成功。代数几何中体积产生的最重要方式之一是通过研究代数簇的约数,它们是研究簇的定义方程的基本对象。给定射影簇的除数,对于其顶幂的程度至少有两种体积理论解释:它是相关联的紧致黎曼流形的体积,它是与除数。该项目将通过引入体积理论工具来研究热带品种的除数和交集数,从而在热带几何中发展这些概念的相似之处。该项目中引入的体积理论工具的应用包括对拟阵特征多项式的对数凹性的最新影响结果的新几何理解,允许将这些对数凹性结果推广到更大一类热带品种的交集数比以前的方法更容易获得,以及开发新的热带方法来研究代数簇的热带紧化因子锥体。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dustin Ross其他文献

Wall-crossing in genus-zero hybrid theory
零属杂化理论中的跨墙
  • DOI:
    10.1515/advgeom-2021-0010
  • 发表时间:
    2018-06-21
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    E. Clader;Dustin Ross
  • 通讯作者:
    Dustin Ross
The gerby Gopakumar-Mariño-Vafa formula
gerby Gopakumar-Mariño-Vafa 公式
  • DOI:
    10.2140/gt.2013.17.2935
  • 发表时间:
    2012-08-21
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Dustin Ross;Zhengyu Zong
  • 通讯作者:
    Zhengyu Zong
Crepant resolutions and open strings
Crepant 决议和开放字符串
GENUS-ONE MIRROR SYMMETRY IN THE LANDAU-GINZBURG MODEL
LANDAU-GINZBURG 模型中的属一镜像对称性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Shuai Guo;Dustin Ross
  • 通讯作者:
    Dustin Ross
Sigma Models and Phase Transitions for Complete Intersections
完整交叉点的西格玛模型和相变
  • DOI:
    10.1093/imrn/rnx029
  • 发表时间:
    2015-11-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Clader;Dustin Ross
  • 通讯作者:
    Dustin Ross

Dustin Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dustin Ross', 18)}}的其他基金

RUI: Compactifying Moduli Spaces of Orbits, Covers, and Curves
RUI:压缩轨道、覆盖和曲线的模空间
  • 批准号:
    2001439
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1401873
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于磁-热-流耦合的永磁过卷保护装置动态温度场研究
  • 批准号:
    52304177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多涡卷多稳态的忆阻神经网络设计及在医疗影像设备加密中的应用
  • 批准号:
    62306144
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多尺度力学模型的捻卷型碳基复合纤维人工肌肉热力耦合机制研究
  • 批准号:
    12372117
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
二维材料卷形、堆叠手性超结构的自旋电子学特性及其器件研究
  • 批准号:
    22375141
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
不同外部受限边界下掺氢碳氢燃料扩散射流火羽流卷吸特性和特征参数演化研究
  • 批准号:
    52376134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating Leishmania strategies for parasitophorous vacuole biogenesis
阐明利什曼原虫寄生液泡生物发生的策略
  • 批准号:
    10672033
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
MOLECULAR GENETICS OF LEISHMANIA
利什曼原虫的分子遗传学
  • 批准号:
    7332260
  • 财政年份:
    1990
  • 资助金额:
    $ 22万
  • 项目类别:
MOLECULAR GENETICS OF LEISHMANIA
利什曼原虫的分子遗传学
  • 批准号:
    7758218
  • 财政年份:
    1990
  • 资助金额:
    $ 22万
  • 项目类别:
MOLECULAR GENETICS OF LEISHMANIA
利什曼原虫的分子遗传学
  • 批准号:
    7169250
  • 财政年份:
    1990
  • 资助金额:
    $ 22万
  • 项目类别:
MOLECULAR GENETICS OF LEISHMANIA
利什曼原虫的分子遗传学
  • 批准号:
    7558569
  • 财政年份:
    1990
  • 资助金额:
    $ 22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了