ERI: Using Ambient Vibrations to Circulate Liquid Coolant in Electric Vehicles
ERI:利用环境振动在电动汽车中循环液体冷却剂
基本信息
- 批准号:2301776
- 负责人:
- 金额:$ 19.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Engineering Research Initiation (ERI) grant will fund research that enables improvements in the efficiency and safety of battery thermal management systems for electric vehicles by leveraging ambient vibrations for cooling onboard electronic components, reducing energy predators, and extending the life of batteries, thereby promoting the progress of science, and advancing the national prosperity. Electric vehicles have become increasingly popular, but their reliance on liquid-based battery thermal management systems to dissipate heat generated by electronic components requires additional power consumption and reduces battery life. To make electric vehicles more practical, cost-effective, environmentally friendly, and longer lasting for consumers, this project investigates a novel and potentially transformative cooling strategy that harnesses ambient vehicular vibrations to produce flexural waves that generate a propulsive force field in a fluid medium and circulate heat transfer fluid for more efficient battery cooling. Alongside the advancement of knowledge, the project will contribute to broader societal benefits through the development of educational modules and course projects, research opportunities for undergraduate students, and outreach activities through the Michigan Tech Summer Youth Programs for students in grades 6-11.This research aims to develop the foundations for a new energy transfer mechanism that leverages ambient vibrations to produce anechoic, directional traveling waves in a structural wave guide and propel fluid within the wave guide. To this end, the project seeks to determine whether anechoic structural waves can be generated from the stochastic vibration profile typical of a moving vehicle, as well as which critical parameters affect the induced fluid flow. Experimental and theoretical investigations will be carried out to identify the optimal nonclassical damping profile that needs to be added to a flexural beam to transform ambient vibrations into broadband steady-state propagating waves and induced fluid motion. Physics-based models will be developed to numerically study the dynamics of beams with multiple localized Kelvin-Voigt damping elements in air and when immersed in water. Experiments will be used to validate theoretical findings and explore features not available through the theoretical modeling, including boundary effects and other sources of damping.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该工程研究启动 (ERI) 拨款将资助研究,通过利用环境振动冷却车载电子元件、减少能量掠夺者并延长电池寿命,从而提高电动汽车电池热管理系统的效率和安全性,从而促进科学进步,促进国家繁荣。电动汽车越来越受欢迎,但它们依赖液体电池热管理系统来散发电子元件产生的热量,需要额外的功耗并缩短电池寿命。为了使电动汽车对消费者来说更实用、更经济、更环保、更耐用,该项目研究了一种新颖且具有潜在变革性的冷却策略,该策略利用环境车辆振动产生弯曲波,在流体介质中产生推进力场,并循环传热流体以更有效地冷却电池。除了知识的进步之外,该项目还将通过开发教育模块和课程项目、为本科生提供研究机会以及通过密歇根理工学院暑期青年项目为 6-11 年级学生开展外展活动,为更广泛的社会效益做出贡献。这项研究旨在开发新的能量传输机制的基础,该机制利用环境振动在结构波导中产生消声、定向行波并推动波导内的流体。为此,该项目试图确定是否可以从移动车辆典型的随机振动剖面中产生消声结构波,以及哪些关键参数影响诱导流体流动。将进行实验和理论研究,以确定需要添加到弯曲梁上的最佳非经典阻尼剖面,以将环境振动转化为宽带稳态传播波和诱发流体运动。将开发基于物理的模型,以数值研究具有多个局部 Kelvin-Voigt 阻尼元件的梁在空气中和浸入水中时的动力学。实验将用于验证理论发现并探索理论模型无法获得的特征,包括边界效应和其他阻尼来源。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijaya Venkata Malladi其他文献
Vijaya Venkata Malladi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
使用Primer ID深度测序检测HIV-1新发感染研究
- 批准号:82373642
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
煤矸石混凝土受弯构件使用性能与设计方法研究
- 批准号:52378191
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向新能源汽车使用特征异质性的“能源-道路交通”碳排放建模
- 批准号:72304031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高能重离子碰撞中使用机器学习研究强子标记的喷注层析
- 批准号:12305140
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
What makes a place busy? Characterising the spatiotemporal elements of the ambient population using a range of data sources
是什么让一个地方变得忙碌?
- 批准号:
2872654 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Studentship
ERASE PFAS: Mechanistic Investigation of PFAS Degradation using Powder Activated Carbon and Persulfate at Ambient Temperature
ERASE PFAS:环境温度下使用粉末活性炭和过硫酸盐降解 PFAS 的机理研究
- 批准号:
2240978 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
The Development of Optical Classification Models for Ambient Aerosols Using Machine Learning
利用机器学习开发环境气溶胶光学分类模型
- 批准号:
2134617 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant