ERI: Additive Manufacturing of Polymer-Matrix Composites with High Concentration of Silicon-Carbide Particles by Novel Digital Light Projection
ERI:通过新型数字光投影增材制造高浓度碳化硅颗粒的聚合物基复合材料
基本信息
- 批准号:2301462
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Additive manufacturing (AM) offers a versatile platform for fabricating ceramic-polymer composites of complex structures. Over the last two decades, various innovative AM processes have been successfully developed for ceramic-polymer 3D printing. Especially, methods based on digital light projection (DLP) enable the direct digital fabrication of intricate structures made of ceramic-polymer composites. Despite potential advantages, current DLP AM have difficulty in printing composites with a high concentration of ceramic particles, e.g., silicon carbide (SiC), desired to enhance the functionality of printed parts. The challenge lies upon the increased viscosity resulted from the particle-polymer interactions, causing high resistance to the feedstock flow. This Engineering Research Initiation (ERI) award supports fundamental research to understand the physics behind printing of ceramic-included photopolymers that are highly viscous. The research involves multi-disciplinary integration of physics, materials science, surface engineering, and manufacturing technology. The project will have strong technological and economic impacts by streamlining production of components with complex geometries, e.g., gyroid structures, for scaffolding and heat exchangers, in an efficient and cost-effective manner, while ensuring the quality in part dimensions as well as microstructures. Moreover, this project will involve minority students in research and teaching, thus, enhancing the STEM education and their representation in advanced manufacturing workforce.The goal of this ERI project is to understand the fundamentals behind two major roadblocks, namely, high separation forces and light scattering, in 3D digital-light printing of complex-shaped parts using highly viscous ceramic suspensions. The project will first address the challenge of high separation forces through the “resin replenishment” mechanism by integrating oxygen permeability into the system, introducing micro-textured air channels to accelerate the resin re-coating and reduce the separation force between the printed part and the build window. Secondly, a dynamic mask image projection strategy will be modeled and employed to minimize the effect of light scattering and undesired photo patterns within the printed part. This will enable high-accuracy and high-speed fabrications of 3D polymer-ceramic parts with complex geometry and precise micro-features. If successful, the project will make a transformative impact of applying surface engineering techniques to oxygen permeable air channels for bottom-up layer-by-layer 3D printing of SiC-polymer composite structures with enhanced mechanical properties. The research will also advance the knowledge of novel projection using dynamic mask images to compensate for the influence of light scattering on curing results. Accordingly, a new technology will be developed to avoid curing defects or failures in high-viscosity ceramic printing and enable producing complex geometries that are challenging to make using existing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
增材制造 (AM) 为制造复杂结构的陶瓷聚合物复合材料提供了一个多功能平台,在过去的二十年中,已经成功开发了用于陶瓷聚合物 3D 打印的各种创新 AM 工艺,特别是基于数字光投影 (DLP) 的方法。 ) ) 能够直接数字化制造由陶瓷聚合物复合材料制成的复杂结构,尽管具有潜在的优势,但当前的 DLP AM 难以打印具有高浓度陶瓷颗粒(例如碳化硅 (SiC))的复合材料,而这正是人们所期望的。增强打印部件的功能面临的挑战在于颗粒与聚合物相互作用导致的粘度增加,从而导致原料流动的高阻力。该工程研究启动(ERI)奖支持基础研究,以了解陶瓷打印背后的物理原理。该研究涉及物理学、材料科学、表面工程和制造技术的多学科整合,通过简化具有复杂几何形状的组件的生产,将产生强大的技术和经济影响。例如,以高效且具有成本效益的方式用于脚手架和热交换器的螺旋结构,同时确保零件尺寸和微观结构的质量。此外,该项目将让少数民族学生参与研究和教学,从而提高 STEM 水平。教育及其在先进制造劳动力中的代表性。该 ERI 项目的目标是了解使用高粘性复杂形状零件 3D 数字光打印中两个主要障碍背后的基本原理,即高分离力和光散射该项目将首先通过“树脂补充”机制解决高分离力的挑战,将透氧性集成到系统中,引入微纹理空气通道以加速树脂重新涂覆并减少打印之间的分离力。其次,将建模并采用动态掩模图像投影策略,以最大限度地减少打印部件内的光散射和不需要的照片图案的影响,这将实现 3D 的高精度和高速制造。具有复杂几何形状和精确微观特征的聚合物陶瓷零件如果成功,该项目将产生革命性的影响,将表面工程技术应用于透氧空气通道,以实现自下而上的逐层碳化硅聚合物复合材料结构的3D打印。该研究还将推进使用动态掩模图像的新型投影知识,以补偿光散射对固化结果的影响,从而开发出一种新技术来避免高粘度下的固化缺陷或失败。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erina Baynojir Joyee其他文献
Erina Baynojir Joyee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
现场谱学电化学动态解析基于正极补锂添加剂的锂离子电池预锂化历程
- 批准号:22379137
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高镍正极表面金属离子和氧基离子双稳定的功能添加剂结构设计及性能研究
- 批准号:22309074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
食品包装来源微纳塑料中添加剂在模拟人体消化道中的释放行为及对消化酶的影响
- 批准号:22306044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
润滑与导热一体化h-BNNS无溶剂纳米流体添加剂的制备、性能及作用机制研究
- 批准号:52305230
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于改进鱼类PBTK模型-体外体内外推方法探究有害塑料添加剂的生物迁移转化机制与生态危害
- 批准号:42377275
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 20万 - 项目类别:
Studentship
Powder Manufacturing Facility for Additive Manufacturing
用于增材制造的粉末制造设施
- 批准号:
LE240100120 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
- 批准号:
2403712 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Micro/nano/additive-manufacturing Program Addressing Challenges Today - Gen 3 (IMPACT-Gen3)
REU 网站:应对当今挑战的跨学科微/纳米/增材制造计划 - 第 3 代 (IMPACT-Gen3)
- 批准号:
2348869 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant