Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
基本信息
- 批准号:2247343
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Current computing systems are facing significant challenges including extremely high energy demand, tremendous consumption of nonrenewable materials, environmental and health issues by electronic waste, and lack of technologies to improve system performance by integration of complementary metal oxide semiconductor (CMOS) microchips with emerging device technologies (denoted X) – “CMOS+X”. This project will address these challenges by exploring an innovative technology to integrate CMOS periphery circuits with a novel memory technology - natural organic honey based resistive switching random access memory (honey-ReRAM) for a new brain-inspired neuromorphic computing system. The prototyped “CMOS + honey-ReRAM” computing system is promising to promote high performance, energy efficient, and sustainable in-memory computing capability for many high impact domains such as engineering, social science, national health, and defense. In addition, the proposed education activities offer unique training opportunities for underrepresented researchers including female, African American, and Native American students.This project targets to explore innovations in device fabrication and system integration technologies to optimize honey-ReRAM devices, establish the feasibility of 3D integration of CMOS circuits with honey-ReRAM arrays, and prototype a CMOS + honey-ReRAM enabled neuromorphic accelerator, an essential neural network hardware component for data processing in a vast range of devices in computing and artificial intelligence. The honey-ReRAM will have highly reproducible memory characteristics, thermal stability, long-term reliability, low-cost, as well as being sustainable. The honey ReRAM will also utilize an eco-friendly synthesis process and device manufacture. A novel three-dimensional (3D) architecture and fabrication technology with a formal design flow will be developed to ensure the compatibility of combining CMOS circuitry with honey-ReRAM arrays by a heterogeneous integration on the microchip. Furthermore, this research will provide a solution to the incompatibility problem in the integration between CMOS and X and effectively accelerate the development and application of CMOS+X technologies for system-level improvements in computing. This project is jointly funded by the Software and Hardware Foundations (SHF) program in the Computing and Communication Foundations (CCF) division, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前的计算系统面临着重大挑战,包括极高的能源需求、不可再生材料的大量消耗、电子废物造成的环境和健康问题,以及缺乏通过将互补金属氧化物半导体 (CMOS) 微芯片与新兴设备技术集成来提高系统性能的技术(用 X 表示)——“CMOS+X”,该项目将通过探索一种创新技术来解决这些挑战,将 CMOS 外围电路与新颖的存储技术——基于天然有机蜂蜜的电阻开关随机存取存储器(honey-ReRAM)集成在一起。新型脑启发神经形态计算系统的原型“CMOS + honey-ReRAM”计算系统有望为工程、社会科学、国家健康等许多高影响领域提升高性能、节能和可持续的内存计算能力。此外,拟议的教育活动为女性、非裔美国人和美国原住民学生等代表性不足的研究人员提供了独特的培训机会。该项目的目标是探索设备制造和系统集成技术的创新,以优化 honey-ReRAM 设备,建立的可行性CMOS 电路与 honey-ReRAM 阵列的 3D 集成,以及 CMOS + honey-ReRAM 支持的神经形态加速器的原型,这是计算和人工智能领域的各种设备中数据处理的重要神经网络硬件组件。 Honey ReRAM 还具有高度可重复的存储特性、热稳定性、长期可靠性、低成本以及可持续发展的特点,并将采用一种新型的三维 (3D) 架构和器件制造。将开发具有正式设计流程的制造技术,以确保通过微芯片上的异构集成将 CMOS 电路与 honey-ReRAM 阵列相结合的兼容性。此外,本研究将为 CMOS 和 X 之间集成的不兼容问题提供解决方案。并有效加速 CMOS+X 技术的开发和应用,以实现计算的系统级改进。该项目由计算和通信基础(CCF)部门的软件和硬件基础(SHF)计划和制定刺激竞争性研究计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinhui Wang其他文献
Design and performance analysis of energy harvesting sensor networks with supercapacitor
超级电容器能量收集传感器网络的设计和性能分析
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ruisi Ge;Zhibin Lin;Na Gong;Jinhui Wang - 通讯作者:
Jinhui Wang
Viewer-Aware Intelligent Efficient Mobile Video Embedded Memory
观看者感知的智能高效移动视频嵌入式内存
- DOI:
10.1109/tvlsi.2017.2787043 - 发表时间:
2018-01-25 - 期刊:
- 影响因子:2.8
- 作者:
Dongliang Chen;J. Edstrom;Y. Gong;Peng Gao;Lei Yang;M. McCourt;Jinhui Wang;Na Gong - 通讯作者:
Na Gong
Phase Change Material for Thermal Management in 3D Integrated Circuits Packaging
用于 3D 集成电路封装热管理的相变材料
- DOI:
10.4071/isom-2015-tha44 - 发表时间:
2015-11-16 - 期刊:
- 影响因子:0
- 作者:
Mingli Li;Na Gong;Jinhui Wang;Zhibin Lin - 通讯作者:
Zhibin Lin
Ionic liquid microwave-assisted hydrodistillation extraction of Angelica sinensis essential oil and its own anti-inflammatory and antioxidant activities
离子液体微波辅助水蒸馏提取当归精油及其抗炎、抗氧化活性
- DOI:
10.1016/j.jarmap.2024.100538 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:3.9
- 作者:
Taotao Li;Huanxian Shi;Wenfei Wang;Jia Li;Tiantian Tang;Yujiao Wang;Ding Liu;Kai Yang;Xuan Wang;Jie Wang;Ning Xia;Jinhui Wang;Chao Chen;Xiaoxiao Ge;Junbo Zou;Dongyan Guo;Yajun Shi;Yundong Xie;Zhenfeng Wu;Ming Yang;Zhaoqiang Wang;W. Xie;Jing Sun;Xiaofei Zhang - 通讯作者:
Xiaofei Zhang
Pervaporation performance and characterization of organosilica membranes with tuned pore size by solid-phase HCl post-treatment
固相 HCl 后处理调节孔径的有机硅膜的渗透汽化性能和表征
- DOI:
10.1016/j.memsci.2013.03.038 - 发表时间:
2013 - 期刊:
- 影响因子:9.5
- 作者:
Jinhui Wang; Masakoto Kanezashi; Tomohisa Yoshioka; Kenji Ito; Toshinori Tsuru - 通讯作者:
Toshinori Tsuru
Jinhui Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinhui Wang', 18)}}的其他基金
IRES Track I: USA-China: International Research Experience for Native American Students in IoT Enabled Environmental Monitoring Technologies
IRES 轨道 I:美国-中国:美国原住民学生在物联网环境监测技术方面的国际研究经验
- 批准号:
1855646 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IRES Track I: USA-China: International Research Experience for Native American Students in IoT Enabled Environmental Monitoring Technologies
IRES 轨道 I:美国-中国:美国原住民学生在物联网环境监测技术方面的国际研究经验
- 批准号:
1827040 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant