RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
基本信息
- 批准号:2246811
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to integrate semantic knowledge from large language models into automated decision-making and control systems while retaining reliability and robustness. The main principle of the proposed approach is to use language models to generate proposals and guidance, but still make the final decision or plan based on principled and robust planning and control methods, such that the language models are used when their semantic predictions are useful but not relied upon to always yield the correct answer. Large language models, such as ChatGPT, have garnered considerable attention in recent years due to their ability to respond to complex user queries and fulfill elaborate requests, such as writing code, composing stories, or providing educational explanations. Because of this, there is considerable interest in using them directly as decision-making systems (for example, if a language model can give “how to” instructions for repairing a car, perhaps it can also issue commands to a robot that actually repairs a car). However, there are also numerous concerns that such models might be too unreliable or too prone to generate false predictions to be useful as decision-making systems on their own. Therefore, this project aims to integrate these models into principled methods for planning and control to leverage the semantic knowledge in these models while providing a degree of robustness. This research has significant ramifications for automated decision-making systems that need to interact with complex real-world environments, where both semantic reasoning and intelligent planning are important. This includes robotic systems, including autonomous vehicles and service robots, intelligent assistants, decision support systems, and a range of automation technologies.The technical approach in this project will be based around a probabilistic formulation that ties together the ungrounded semantic predictions from language models with grounded but non-semantic predictions from learned dynamics models. In this way, probabilistic inference machinery can be used to derive algorithms that make decisions that have a high likelihood of being semantically good according to the language model and a high likelihood of being physically (dynamically) optimal according to the learned dynamics model. In practice, this principle can be instantiated in the context of both model-based and model-free reinforcement-learning systems, learned prediction systems, and planning algorithms (by formulating planning as inference). The project will explore applications of this concept to prediction, planning and control, and exploration in reinforcement learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在将大型语言模型的语义知识集成到自动化决策和控制系统中,同时保留可靠性和鲁棒性。所提出方法的主要原则是使用语言模型生成建议和指导,但仍然做出最终决策或。基于原则性和鲁棒性的规划和控制方法进行规划,以便在语义预测有用但不依赖于总是产生正确答案时使用语言模型,例如 ChatGPT,近年来引起了相当大的关注。由于它们能够响应复杂的用户查询并满足复杂的要求,例如编写代码、编写故事或提供教育解释,因此,人们对直接将它们用作决策系统非常感兴趣(例如,如果语言模型可以给出“如何”指令)。对于修理汽车,也许它也可以向实际修理汽车的机器人发出命令。但是,也有很多人担心这种模型可能太不可靠或太容易产生错误的预测,无法用作决策系统。因此,这个项目的目标是。将这些模型集成到规划和控制的原则方法中,以利用这些模型中的语义知识,同时提供一定程度的鲁棒性。这项研究对于需要与复杂的现实世界环境交互的自动化决策系统具有重大影响。语义推理和智能规划非常重要,其中包括机器人系统(包括自动驾驶车辆和服务机器人)、智能助手、决策支持系统和一系列自动化技术。该项目的技术方法将基于相互联系的概率公式。没有根据的语义预测通过学习动态模型进行有根据的但非语义的预测的语言模型,可以使用概率推理机制来导出算法,这些算法根据语言模型做出的决策在语义上很可能是好的,并且在语义上是好的。在实践中,这一原理可以在基于模型和无模型的强化学习系统、学习预测系统和规划算法的背景下实例化(通过将规划制定为推理)。 ).该项目将探索这一概念在预测、规划和控制以及强化学习探索中的应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Levine其他文献
AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents
AutoRT:机器人代理大规模编排的具体基础模型
- DOI:
10.48550/arxiv.2401.12963 - 发表时间:
2024-01-23 - 期刊:
- 影响因子:0
- 作者:
Michael Ahn;Debidatta Dwibedi;Chelsea Finn;Montse Gonzalez Arenas;K. Gopalakrishnan;Karol Hausman;Brian Ichter;A. Irpan;Nikhil Joshi;Ryan C. Julian;Sean Kirmani;Isabel Leal;T. Lee;Sergey Levine;Yao Lu;Sharath Maddineni;Kanishka Rao;Dorsa Sadigh;Pannag R. Sanketi;P. Sermanet;Q. Vuong;Stefan Welker;Fei Xia;Ted Xiao;Peng Xu;Steve Xu;Zhuo Xu - 通讯作者:
Zhuo Xu
Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning
Cal-QL:经过校准的离线强化学习预训练,可实现高效的在线微调
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Mitsuhiko Nakamoto;Yuexiang Zhai;Anika Singh;Max Sobol Mark;Yi Ma;Chelsea Finn;Aviral Kumar;Sergey Levine;Uc Berkeley - 通讯作者:
Uc Berkeley
Is Value Learning Really the Main Bottleneck in Offline RL?
价值学习真的是离线强化学习的主要瓶颈吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Seohong Park;Kevin Frans;Sergey Levine;Aviral Kumar - 通讯作者:
Aviral Kumar
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator
代码链:使用语言模型增强代码模拟器进行推理
- DOI:
10.48550/arxiv.2312.04474 - 发表时间:
2023-12-07 - 期刊:
- 影响因子:0
- 作者:
Chengshu Li;Jacky Liang;Andy Zeng;Xinyun Chen;Karol Hausman;Dorsa Sadigh;Sergey Levine;Fei;Fei Xia;Brian Ichter - 通讯作者:
Brian Ichter
Octo: An Open-Source Generalist Robot Policy
Octo:开源多面手机器人政策
- DOI:
10.1021/acsbiomaterials.6b00281 - 发表时间:
2024-05-20 - 期刊:
- 影响因子:5.8
- 作者:
Octo Model Team;Dibya Ghosh;Homer Walke;Karl Pertsch;Kevin Black;Oier Mees;Sudeep Dasari;Joey Hejna;Tobias Kreiman;Charles Xu;Jianlan Luo;You Liang Tan;Pannag R. Sanketi;Quan Vuong;Ted Xiao;Dorsa Sadigh;Chelsea Finn;Sergey Levine - 通讯作者:
Sergey Levine
Sergey Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Levine', 18)}}的其他基金
Robotic Learning with Reusable Datasets
使用可重复使用的数据集进行机器人学习
- 批准号:
2150826 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Deep Robotic Learning with Large Datasets: Toward Simple and Reliable Lifelong Learning Frameworks
职业:大数据集的深度机器人学习:迈向简单可靠的终身学习框架
- 批准号:
1651843 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1700697 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1700696 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1637443 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1614653 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1614653 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于Rab8A介导的小胶质细胞铁稳态及神经炎症调控探讨灵芝提取物改善LRRK2-G2019S突变介导的帕金森病的机制
- 批准号:82305015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卫星重力提取中-小尺度陆地水变化的先验信息约束与联合反演研究
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
卫星重力提取中-小尺度陆地水变化的先验信息约束与联合反演研究
- 批准号:42274110
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
小域上保密信息提取的方案构造问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小岩体成矿机制的蚀变分带光谱模型及提取方法研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Extracting and Representing Commonsense Knowledge Using Language Models
RI:小:使用语言模型提取和表示常识知识
- 批准号:
2006851 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Accessible and Interpretable Machine Reading Methods for Extracting Structured Information from Text
III:小:从文本中提取结构化信息的可访问且可解释的机器阅读方法
- 批准号:
2006583 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Extracting Dynamics from Limited Data for Modeling and Control of Unmanned Autonomous Systems
RI:小型:协作研究:从有限数据中提取动力学,用于无人自主系统的建模和控制
- 批准号:
1910087 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Extracting Dynamics from Limited Data for Modeling and Control of Unmanned Autonomous Systems
RI:小型:协作研究:从有限数据中提取动力学,用于无人自主系统的建模和控制
- 批准号:
1910308 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CHS: Small: Extracting affect and interaction information from primary care visits to support patient-provider interactions
CHS:小型:从初级保健就诊中提取情感和互动信息,以支持患者与提供者之间的互动
- 批准号:
1816010 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant