CRII: SaTC: Towards Data-effective and Cost-efficient Security Attack Detections

CRII:SaTC:迈向数据有效且经济高效的安全攻击检测

基本信息

  • 批准号:
    2245968
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Increased connectivity of devices and people to the Internet has created an ever-expanding security attack surface. Machine learning (ML) techniques have been used to help detect attacks and may offer a more scalable way to deal with an increasingly large attack surface. However, acquiring a large volume of high-quality labelled attack samples is both costly and time consuming. Further, the acquired data set quite often do not fully represent the true data distribution. Given the challenge of labeled data scarcity and imbalance in representation, this project's novelties are to explore new ways to build data driven cyber-attack detection systems that can learn effectively from limited or biased cyber data set in a cost-efficient manner. The project's broader significance and importance are 1) enhancing the data-driven security attack detection infrastructure that leads to more secure and trustworthy cyberspace; 2) bridging the gap between research and practice by creating open-source systems that encourage real security productions, 3) providing research opportunities to both undergraduate and graduate students in the area of AI/ML enabled cyber defense.This project unveils an insight on how limited and/or imbalanced attack samples can be used as effective training data to facilitate data-driven model construction and enable high-performance security attack detection with low cost in practice. Towards this insight, this project contains three technical approaches: (1) cross-modal adversarial reprogramming that repurposes prior trained transformer models by inserting patch-level perturbations to inputs, reducing the number of parameters needed yet still maintaining its capability for data-limited learning; (2) scalable semi-supervised learning through consistency and contrastive regularization to boost model generalization for performing pseudo-labeling tasks and to help reduce label bias; (3) leveraging labeled and unlabeled objects to extend these two learning pipelines for more effective attack detection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设备和人员与互联网的连接性不断增强,导致安全攻击面不断扩大。机器学习(ML)技术已被用来帮助检测攻击,并可能提供一种更具可扩展性的方法来应对日益扩大的攻击面。然而,获取大量高质量的标记攻击样本既昂贵又耗时。此外,获取的数据集通常不能完全代表真实的数据分布。考虑到标记数据稀缺和代表性不平衡的挑战,该项目的新颖之处在于探索构建数据驱动的网络攻击检测系统的新方法,该系统可以以经济高效的方式从有限或有偏见的网络数据集中有效地学习。该项目更广泛的意义和重要性是:1)增强数据驱动的安全攻击检测基础设施,从而打造更安全、更值得信赖的网络空间; 2) 通过创建鼓励真正安全生产的开源系统来弥合研究与实践之间的差距,3) 为人工智能/机器学习支持的网络防御领域的本科生和研究生提供研究机会。该项目揭示了如何有限和/或不平衡的攻击样本可以作为有效的训练数据,以促进数据驱动的模型构建,并在实践中以低成本实现高性能的安全攻击检测。为了实现这一见解,该项目包含三种技术方法:(1)跨模式对抗性重新编程,通过在输入中插入补丁级扰动来重新调整先前训练的变压器模型的用途,减少所需参数的数量,但仍保持其数据有限学习的能力; (2) 通过一致性和对比正则化进行可扩展的半监督学习,以提高执行伪标签任务的模型泛化能力,并帮助减少标签偏差; (3) 利用标记和未标记对象来扩展这两个学习管道,以实现更有效的攻击检测。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pseudo-Labeling with Graph Active Learning for Few-shot Node Classification
使用图主动学习进行伪标记进行少样本节点分类
HOVER: Homophilic Oversampling via Edge Removal for Class-Imbalanced Bot Detection on Graphs
HOVER:通过边缘去除进行同质过采样,用于图上的类不平衡机器人检测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lingwei Chen其他文献

Enhancing Rare Cell Type Identification in Single-Cell Data: An Innovative Gene Filtering Approach using Bipartite Cell-Gene Relation Graph
增强单细胞数据中的稀有细胞类型识别:使用二分细胞基因关系图的创新基因过滤方法
Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks
使用文件到文件关系的智能恶意软件检测并增强其针对对抗性攻击的安全性
ICSD: An Automatic System for Insecure Code Snippet Detection in Stack Overflow over Heterogeneous Information Network
ICSD:异构信息网络堆栈溢出中不安全代码片段检测的自动系统
Watermarking-based Defense against Adversarial Attacks on Deep Neural Networks
基于水印的深度神经网络对抗性攻击防御
Higher-order Weighted Graph Convolutional Networks
高阶加权图卷积网络
  • DOI:
  • 发表时间:
    2019-09-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Songtao Liu;Lingwei Chen;Hanze Dong;Zihao Wang;Dinghao Wu;Zengfeng Huang
  • 通讯作者:
    Zengfeng Huang

Lingwei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CRII: SaTC: Towards a Secure and Efficient Ethereum P2P Network with Client Diversity
CRII:SaTC:迈向具有客户端多样性的安全高效的以太坊 P2P 网络
  • 批准号:
    2347486
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
  • 批准号:
    2241713
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Understanding and Defending Against New Waves of Online Hate
CRII:SaTC:理解和防御新一波的网络仇恨
  • 批准号:
    2245983
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Detecting and Mitigating Vulnerabilities
CRII:SaTC:致力于检测和缓解漏洞
  • 批准号:
    2153474
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Secure and Privacy-preserving Input on Augmented Reality Systems
CRII:SaTC:增强现实系统的安全和隐私保护输入
  • 批准号:
    2153397
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了