ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips

ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度

基本信息

  • 批准号:
    2328993
  • 负责人:
  • 金额:
    $ 487.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

Nontechnical Abstract: This ExpandQISE program at The City College of New York seeks to advance the fundamental understanding of quantum phenomena in engineered optical structures endowed with additional degrees of freedom by manipulating the fundamental properties of light and its interaction with nanomaterials. This initiative aims at the development of nascent quantum materials with novel properties that can be attained by combining topological photonic properties and quantum properties of light and matter. This project advances the fields of integrated quantum photonics through the systematic discovery of new materials that possess the necessary functionalities to enable development of novel quantum devices. To maximize the effectiveness of the discovery process, this project combines theoretical and experimental efforts from interdisciplinary teams, including academia (City College and University of Central Florida) and industry. In addition to its direct scientific impact, the project will have a broad societal impact through the development of emerging technologies for quantum information processing and advances ongoing workforce development efforts thanks to the strong involvement of undergraduate students in all aspects of research. Outreach programs with active participation of high school and undergraduate students, with focus on underrepresented groups, will further broaden the project impact. Technical Abstract: This ExpandQISE program at The City College of New York seeks to address fundamental questions of materials science and light-matter interactions in artificial quantum optical materials endowed with additional synthetic degrees of freedom – pseudo-spins – and characterized by nontrivial topological properties. Our research team builds on our existing expertise in theoretical nano-photonics as well as advanced fabrication and experimental techniques to attain novel materials characteristics and functionalities emerging in quantum regimes. Specifically, this activity focuses on development of the concept of active quantum topological materials that will enable control over quantum excitations of both light and matter on a photonic chip. This effort enables generation and manipulation of quantum states of structured optical modes and topological boundary states endowed with synthetic degrees of freedom on a chip. Additionally, by harnessing the fundamental properties of such quantum photonic states this project enables novel polaritonic states with tailored properties that can be used for quantum technologies, such as control of pseudo-spins with synthetic gauge fields engineered at nanoscale, including actively via light-matter interactions. The possibility to imprint the state of a pseudo-spin onto quantum states of light emitted by integrated quantum emitters enables novel opportunities for integrated quantum photonics, where quantum information is encoded in the modal structure of optical states. Our approach to quantum materials design leverages a variety of quantum excitations in materials integrated into topological photonic structures, such as van der Waals materials, organic excitonic materials, and wide bandgap semiconductors. The coupling of structured light with quantum emitters is attained through their precise integration. At the same time, strong and highly tailorable light-matter interactions engineered in our platform enable extreme nonlinearities, including nonlinear effects with selection rules dictated by symmetry-engineered pseudo-spins, photon blockade and synthetic gauge fields. Tunable synthetic gauge fields emerging from such tailored light-matter interactions open a pathway to realize unitary operations – reprogrammable quantum gates – in the photonic pseudo-spin subspace.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), the Directorate of Engineering (ENG), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:纽约城市学院的 ExpandQISE 项目旨在通过操纵光的基本特性及其与纳米材料的相互作用,促进对具有额外自由度的工程光学结构中的量子现象的基本理解。开发具有新特性的新兴量子材料,这些新特性可以通过将拓扑光子特性与光和物质的量子特性相结合来实现。该项目通过系统地发现具有必要功能的新材料来推进集成量子光子学领域。为了最大限度地提高发现过程的有效性,该项目结合了跨学科团队的理论和实验工作,包括学术界(城市学院和中佛罗里达大学)和工业界。由于本科生积极参与各方面的研究,以及高中生和本科生的积极参与,该项目将通过开发量子信息处理的新兴技术和持续的劳动力发展努力来产生广泛的社会影响。重点关注代表性不足的群体,将进一步扩大该项目技术摘要:纽约城市学院的 ExpandQISE 项目旨在解决人造量子光学材料中材料科学和光与物质相互作用的基本问题,这些材料具有额外的合成自由度(赝自旋),并具有非平凡的拓扑特征。我们的研究团队以我们在理论纳米光子学以及先进制造和实验技术方面的现有专业知识为基础,以获得量子领域中出现的新颖材料特性和功能。具体来说,这项活动的重点是活性量子拓扑材料概念的开发。这将能够控制光子芯片上的光和物质的量子激发,通过利用基本原理,能够生成和操纵具有合成自由度的结构光学模式和拓扑边界态。该项目能够实现具有可用于量子技术的定制特性的新型极化子态,例如通过纳米级设计的合成规范场控制赝自旋,包括主动通过光与物质相互作用进行印记的可能性。的状态集成量子发射器发射的光的量子态上的伪自旋为集成量子光子学提供了新的机会,其中量子信息被编码在光学状态的模态结构中,我们的量子材料设计方法利用了集成材料中的各种量子激发。拓扑光子结构,如范德华材料、有机激子材料和宽带隙半导体,通过它们的精确集成实现了结构光与量子发射器的耦合。在我们的平台中设计的可定制的光-物质相互作用可以实现极端的非线性,包括由对称设计的赝自旋、光子封锁和合成规范场决定的非线性效应,这种定制的光-物质相互作用开辟了一条途径。在光子赝自旋子空间中实现酉运算——可重新编程的量子门。该项目由多学科活动办公室(MPS/OMA)、工程理事会联合资助(ENG) 和技术前沿计划 (TIP/TF)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Khanikaev其他文献

Alexander Khanikaev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Khanikaev', 18)}}的其他基金

Novel Aspects of Topological Photonics in Open Optical Systems: Non-Hermiticity and Fano-Resonances
开放光学系统中拓扑光子学的新颖之处:非厄米性和法诺共振
  • 批准号:
    1809915
  • 财政年份:
    2018
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1660491
  • 财政年份:
    2016
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1537294
  • 财政年份:
    2015
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

IRES Track I: Island Invasion Biology - Leveraging the Galapagos and Hawaiian Islands to provide immersive undergraduate research experiences.
IRES 轨道 I:岛屿入侵生物学 - 利用加拉帕戈斯群岛和夏威夷群岛提供沉浸式本科生研究体验。
  • 批准号:
    2245931
  • 财政年份:
    2024
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track II: Short Courses on Manufacturing Frontiers Leveraging Unique Facilities in Italy
合作研究:IRES Track II:利用意大利独特设施的制造前沿短期课程
  • 批准号:
    2246809
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track II: Short Courses on Manufacturing Frontiers Leveraging Unique Facilities in Italy
合作研究:IRES Track II:利用意大利独特设施的制造前沿短期课程
  • 批准号:
    2246808
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
CIVIC-FA Track A: Leveraging existing fiber-optic cables to identify and manage urban environmental hazards
CIVIC-FA 轨道 A:利用现有光纤电缆识别和管理城市环境危害
  • 批准号:
    2322198
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
RII Track-4: Leveraging fermented foods to understand microbial interactions under changing environments and broaden scientific training opportunities
RII Track-4:利用发酵食品了解不断变化的环境下微生物的相互作用并扩大科学培训机会
  • 批准号:
    2132238
  • 财政年份:
    2022
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了