ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips

ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度

基本信息

  • 批准号:
    2328993
  • 负责人:
  • 金额:
    $ 487.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

Nontechnical Abstract: This ExpandQISE program at The City College of New York seeks to advance the fundamental understanding of quantum phenomena in engineered optical structures endowed with additional degrees of freedom by manipulating the fundamental properties of light and its interaction with nanomaterials. This initiative aims at the development of nascent quantum materials with novel properties that can be attained by combining topological photonic properties and quantum properties of light and matter. This project advances the fields of integrated quantum photonics through the systematic discovery of new materials that possess the necessary functionalities to enable development of novel quantum devices. To maximize the effectiveness of the discovery process, this project combines theoretical and experimental efforts from interdisciplinary teams, including academia (City College and University of Central Florida) and industry. In addition to its direct scientific impact, the project will have a broad societal impact through the development of emerging technologies for quantum information processing and advances ongoing workforce development efforts thanks to the strong involvement of undergraduate students in all aspects of research. Outreach programs with active participation of high school and undergraduate students, with focus on underrepresented groups, will further broaden the project impact. Technical Abstract: This ExpandQISE program at The City College of New York seeks to address fundamental questions of materials science and light-matter interactions in artificial quantum optical materials endowed with additional synthetic degrees of freedom – pseudo-spins – and characterized by nontrivial topological properties. Our research team builds on our existing expertise in theoretical nano-photonics as well as advanced fabrication and experimental techniques to attain novel materials characteristics and functionalities emerging in quantum regimes. Specifically, this activity focuses on development of the concept of active quantum topological materials that will enable control over quantum excitations of both light and matter on a photonic chip. This effort enables generation and manipulation of quantum states of structured optical modes and topological boundary states endowed with synthetic degrees of freedom on a chip. Additionally, by harnessing the fundamental properties of such quantum photonic states this project enables novel polaritonic states with tailored properties that can be used for quantum technologies, such as control of pseudo-spins with synthetic gauge fields engineered at nanoscale, including actively via light-matter interactions. The possibility to imprint the state of a pseudo-spin onto quantum states of light emitted by integrated quantum emitters enables novel opportunities for integrated quantum photonics, where quantum information is encoded in the modal structure of optical states. Our approach to quantum materials design leverages a variety of quantum excitations in materials integrated into topological photonic structures, such as van der Waals materials, organic excitonic materials, and wide bandgap semiconductors. The coupling of structured light with quantum emitters is attained through their precise integration. At the same time, strong and highly tailorable light-matter interactions engineered in our platform enable extreme nonlinearities, including nonlinear effects with selection rules dictated by symmetry-engineered pseudo-spins, photon blockade and synthetic gauge fields. Tunable synthetic gauge fields emerging from such tailored light-matter interactions open a pathway to realize unitary operations – reprogrammable quantum gates – in the photonic pseudo-spin subspace.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), the Directorate of Engineering (ENG), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:纽约市城市学院的这个扩展QISE计划旨在通过操纵光的基本特性及其与纳米材料的相互作用来促进对工程光学结构中量子现象的基本了解。该计划旨在开发新生的量子材料具有新型特性,可以通过结合光和物质的拓扑光子特性和量子性能来附加。该项目通过系统地发现具有必要功能的新材料来促进综合量子光子学的领域,从而能够开发新型的量子设备。为了最大化发现过程的有效性,该项目结合了跨学科团队的理论和实验努力,包括学术界(城市学院和中部佛罗里达大学)和工业。除了其直接的科学影响外,该项目还将通过开发新兴技术来进行量子信息处理以及持续正在进行的劳动力发展工作的发展,对本科生在研究的各个方面的强烈参与。高中和本科生积极参与的外展计划,重点是代表性不足的群体,将进一步扩大项目影响。技术摘要:纽约市城市学院的该扩展QISE计划旨在解决材料科学和轻质量子相互作用的基本问题,这些量子光学材料具有额外的合成自由度(伪旋转) - 伪造 - 并由非平凡拓扑特性进行特征。我们的研究团队以我们现有的理论纳米光子学专业知识以及高级制造和实验技术为基础,以实现新颖的材料特征和量子制度中出现的功能。特别是,该活动的重点是发展活性量子拓扑材料的概念,该概念将能够控制光子芯片上光和物质的量子兴奋。这项工作使结构化光学模式和拓扑边界状态的量子状态的产生和操纵具有芯片上合成的自由度。此外,通过利用此类量子光子状态的基本特性,该项目可以实现具有量身定制特性的新型偏光型状态,可用于量子技术,例如对纳米级工程设计的合成规范对伪旋转的控制,包括通过光 - 摩尔特相互作用进行积极的。将伪旋转状态烙印在综合量子发射器发出的光的量子状态的可能性中,为综合量子光子学带来了新的机会,其中量子信息在光学状态的模态结构中编码。我们的量子材料设计的方法利用了整合到拓扑光子结构中的材料中的各种量子令人兴奋,例如范德华材料,有机刺激材料和宽带的带隙半导体。结构化光与量子发射器的耦合通过其精确整合附着。同时,在我们的平台上设计的强大且高度可量身定制的光 - 互动实现了极端的非线性,包括具有对称性工程化的伪旋转,光子盖块和合成仪字段所决定的非线性效应。在这种量身定制的光线相互作用中出现的可调节合成量规场为实现单一操作(可重编程的量子门)打开了一条途径,在光子伪型旋转子空间中。该项目由多学科活动办公室(MPS/OMA)共同资助,工程统计局(Engiers and The Technology and the Inderions and tip and tip and tip and tip and tip and tip and tip and tip)。使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Khanikaev其他文献

Alexander Khanikaev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Khanikaev', 18)}}的其他基金

Novel Aspects of Topological Photonics in Open Optical Systems: Non-Hermiticity and Fano-Resonances
开放光学系统中拓扑光子学的新颖之处:非厄米性和法诺共振
  • 批准号:
    1809915
  • 财政年份:
    2018
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1660491
  • 财政年份:
    2016
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1537294
  • 财政年份:
    2015
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant

相似国自然基金

利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用体细胞谱系追踪方法研究乳腺癌转移的演化机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用体细胞谱系追踪方法研究乳腺癌转移的演化机制
  • 批准号:
    32100486
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
利用分子追踪技术精准解析非造血干细胞依赖性红细胞的初期发育及其调控机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
利用分子追踪技术精准解析非造血干细胞依赖性红细胞的初期发育及其调控机制
  • 批准号:
    82170121
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目

相似海外基金

IRES Track I: Island Invasion Biology - Leveraging the Galapagos and Hawaiian Islands to provide immersive undergraduate research experiences.
IRES 轨道 I:岛屿入侵生物学 - 利用加拉帕戈斯群岛和夏威夷群岛提供沉浸式本科生研究体验。
  • 批准号:
    2245931
  • 财政年份:
    2024
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track II: Short Courses on Manufacturing Frontiers Leveraging Unique Facilities in Italy
合作研究:IRES Track II:利用意大利独特设施的制造前沿短期课程
  • 批准号:
    2246809
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track II: Short Courses on Manufacturing Frontiers Leveraging Unique Facilities in Italy
合作研究:IRES Track II:利用意大利独特设施的制造前沿短期课程
  • 批准号:
    2246808
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
CIVIC-FA Track A: Leveraging existing fiber-optic cables to identify and manage urban environmental hazards
CIVIC-FA 轨道 A:利用现有光纤电缆识别和管理城市环境危害
  • 批准号:
    2322198
  • 财政年份:
    2023
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
RII Track-4: Leveraging fermented foods to understand microbial interactions under changing environments and broaden scientific training opportunities
RII Track-4:利用发酵食品了解不断变化的环境下微生物的相互作用并扩大科学培训机会
  • 批准号:
    2132238
  • 财政年份:
    2022
  • 资助金额:
    $ 487.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了