ExpandQISE: Track 1: Analog quantum simulation of non-Markovian dynamics of multi-qubit systems
ExpandQISE:轨道 1:多量子位系统非马尔可夫动力学的模拟量子模拟
基本信息
- 批准号:2328948
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: A multi-qubit system is used in various quantum technologies, including quantum communication, quantum sensing, quantum cryptography, and quantum simulation. Since any quantum system cannot be fully isolated from the environment, open quantum systems are introduced to model the evolution of a quantum system while considering the interactions between the quantum system and the environment. Depending on the strength and the type of this interaction, there are two types of open quantum systems dynamics - Markovian and non-Markovian, where the non-Markovian dynamics are more accurate. In this research, the project team will advance and promote the research on analog quantum simulation of non-Markovian dynamics of multi-qubit systems. In addition, this research will implement an investment and reward feedback loop for inspiring K-12 students and attracting, retaining, and educating undergraduate, female, and underrepresented minority students by exposing them to this quantum-related research. Further, this project broadens and strengthens the current quantum physics curriculum at the undergraduate level by enhancing existing courses and creating new ones.Technical Abstract: Understanding the dynamics of a quantum system in connection with its surrounding environment is crucial for harnessing the full potential of quantum information processing tasks. However, modeling the non-Markovian dynamics of open quantum systems faces two grand challenges: (i) current efforts use a modified Markovian master equation to describe the non-Markovian dynamics, which could be inaccurate. (ii) The lack of a systematic method for obtaining approximated positivity-preserving master equations (PPME) limits the capability of current techniques in practice. The research aims to develop analog quantum algorithms to study the non-Markovian dynamics of multi-qubit systems built on the quantum-state-diffusion (QSD) equation approach. Particularly, this research: (i) leverages the QSD approach to obtaining the generalized formalism of the non-Markovian master equation; (ii) optimizes and generates PPME with approximations applied; (iii) develops a systematic method to derive Kraus operators for complicated interactions; (iv) devises a Monte-Carlo-based quantum simulation algorithm initiated from the stochastic quantum trajectories, instead of the density matrix.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), Computing and Communications Foundations (CCF) Division, and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:多数系统用于各种量子技术,包括量子通信,量子传感,量子加密和量子模拟。由于任何量子系统都不能与环境完全隔离,因此引入开放量子系统来对量子系统的演变进行建模,同时考虑量子系统与环境之间的相互作用。根据这种相互作用的强度和类型,有两种类型的开放量子系统动力学 - 马尔可夫和非马克维亚,非马克维亚动力学更准确。在这项研究中,项目团队将促进和促进对多Qubit Systems非马克维亚动态模拟量子模拟的研究。此外,这项研究将对启发K-12学生进行投资和奖励反馈循环,并吸引,保留和教育本科,女性和代表性不足的少数族裔学生,通过将他们暴露于这项与量子相关的研究中。此外,该项目通过增强现有课程并创建新的课程来扩展并增强本科级别的当前量子物理课程。技术摘要:了解与周围环境相关的量子系统的动态,对于利用量子的全部潜力至关重要信息处理任务。但是,对开放量子系统的非马克维亚动力进行建模面临两个巨大的挑战:(i)当前的努力使用修改后的马尔可夫主方程来描述非马克维亚动力学,这可能是不准确的。 (ii)缺乏一种系统的方法来获得近似阳性的主方程(PPME)限制了当前技术在实践中的能力。该研究旨在开发模拟量子算法,以研究基于量子状态扩散(QSD)方程方法的多量系统的非马克维亚动力学。特别是这项研究:(i)利用QSD方法来获得非马克维亚主方程的普遍形式主义; (ii)使用近似值优化并生成PPME; (iii)开发了一种系统的方法来推导KRAUS操作员进行复杂的相互作用; (iv)设计一种从随机量子轨迹启动的基于蒙特卡洛的量子模拟算法,而不是密度矩阵。该项目由多学科活动办公室(MPS/OMA),计算和通信基础(CCF)共同资助。部门和技术前沿计划(TIP/TF)。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yusui Chen其他文献
Preparation of spin squeezed state in SiV centers coupled by diamond waveguide
金刚石波导耦合 SiV 中心自旋压缩态的制备
- DOI:
10.1088/1674-1056/ac05b3 - 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
Yong;Yuan Xu;Quanzhen Ding;Yusui Chen - 通讯作者:
Yusui Chen
Yusui Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
石羊河上游径流水源追踪量化的模拟研究
- 批准号:42301153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于模拟肽配体群识别技术的体内抗体药PTMs动态追踪分析新方法研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
原位地应力环境下裂隙岩体中溶质传输粒子追踪模拟和升尺度方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁岛演化程序与束追踪程序耦合自洽模拟电子回旋电流驱动控制撕裂模研究
- 批准号:11905251
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
超声速混合层中涡致气动光学效应的机理研究
- 批准号:11802264
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the role of locus coeruleus glucagon-like peptide-1 receptors in feeding behavior
检查蓝斑胰高血糖素样肽-1 受体在摄食行为中的作用
- 批准号:
10664322 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Molecular mechanisms of ZAK- and GCN2-mediated signaling in response to ribotoxic stress
ZAK 和 GCN2 介导的信号响应核糖应激的分子机制
- 批准号:
10740532 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Track 1 EFRI DCL: Planning Grant: Brain Inspired Intelligence Distributing High Efficiency RF/Analog Signal Processing Circuit
Track 1 EFRI DCL:规划拨款:大脑启发智能分配高效射频/模拟信号处理电路
- 批准号:
2217637 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Integrating Wastewater-Based Epidemiology into the National Drug Early Warning System Coordinating Center to Track Community Health Trends
将基于废水的流行病学纳入国家药物预警系统协调中心,以跟踪社区健康趋势
- 批准号:
10375878 - 财政年份:2021
- 资助金额:
$ 65万 - 项目类别:
Ventral Pallidum Circuits in Motivation, Risky Decision Making, and Opioid Addiction
腹侧苍白球回路在动机、危险决策和阿片类药物成瘾中的作用
- 批准号:
10308001 - 财政年份:2020
- 资助金额:
$ 65万 - 项目类别: