GEO-CM: Prospecting for critical element deposits: an interdisciplinary approach using experimental geochemistry and field-informed modeling of sediment transport

GEO-CM:关键元素矿床勘探:利用实验地球化学和沉积物输运现场知情建模的跨学科方法

基本信息

  • 批准号:
    2327940
  • 负责人:
  • 金额:
    $ 61.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Critical minerals like cobalt, niobium, and tin are essential resources needed for modern technologies. These technologies include smartphones, batteries, electric vehicles, and satellites. Critical minerals are a key resource needed to move to a sustainable energy economy. However, the demand for these minerals could soon exceed the available supply. Additionally, there is a risk of disruptions in the international supply chain. To lower these risks, which carry significant economic and national security implications, the goal of this proposal is to increase geoscientists' abilities to find more of these critical mineral resources in the Earth. This project will create new tools to analyze river sediment with two main objectives. First, the work will determine whether critical minerals might be upstream that have not yet been discovered. Second, the project aims to locate places upstream where these minerals are concentrated. This project will provide education and training on critical mineral research to a PhD student, a postdoc, and multiple undergraduate students. A critical mineral module will make up approximately 2-3 weeks of lectures for an undergraduate Earth Materials course. The PIs will also partner with a local youth leadership and workforce development program in Rochester, NY. The goal of the partnership is to provide experience in environmental research and careers for students from underrepresented groups over the summer. Imagine collecting a scoop of sand from a river; hidden in that single scoop lies information about the rocks in the entire drainage basin. Analysis of the sediment grains may reveal the presence of a critical element of interest in a proxy mineral, indicating a source rock of possible interest somewhere in the area. This project explores two questions: Does the trace element concentration within minerals in sediment fingerprint a potentially fertile igneous source enriched in the critical element of interest? If it does, can the transport history of the sediment be modeled using physical properties of the grain such as shape and size to constrain the likely location of the fertile source that produced it? The goal of this work is to enhance prediction capabilities of undiscovered critical mineral-rich source rocks by using river sediments for prospecting by combining 1) high temperature laboratory experiments to characterize zircon, quartz, and rutile chemistry so that they can be used as “indicator minerals” for critical mineral deposits and 2) numerical modeling and field-based sediment tracer studies that will improve predictions of sediment transport distance and the location of viable critical mineral source rocks. For the first objective, the team will use experimental geochemistry to synthesize quartz, zircon, and rutile in the presence of a critical element bearing mineral. These experiments will allow the researchers to define the threshold concentrations of different critical elements in target indicator minerals that would suggest a fertile source. For the second objective, the investigators will use coupled fluid-granular numerical models to develop new statistical distributions of sediment transport distance depending on grain shape and size. The team will also use RFID-tagged rocks to track sediment transport in two natural rivers to determine how sediment size and shape affect their travel distances in natural systems. This fundamental work will set the stage for future development of a comprehensive model that predicts critical mineral source rock location from river sediment properties alone. Findings from this proposal will extend beyond mineral prospecting; developing a new view of the processes that occur during the lifetime of sediments, from birth within a rock to transport and degradation through a river system, has implications for the fundamental understanding of Earth materials and the evolution of Earth’s surface.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
钴、铌和锡等关键矿物是现代技术所需的重要资源,这些技术包括智能手机、电池、电动汽车和卫星。然而,关键矿物是迈向可持续能源经济所需的关键资源。此外,这些矿物可能很快就会超过可用供应量,为了降低这些对经济和国家安全产生重大影响的风险,该提案的目标是提高地球科学家的发现能力。更多这些该项目将创建新的工具来分析河流沉积物,其主要目标有两个:首先,该工作将确定上游是否可能存在尚未发现的地方。该项目将为一名博士生、一名博士后和多名本科生提供关键矿物研究的教育和培训,一个关键矿物模块将构成本科生地球材料课程的大约 2-3 周的讲座。 PI 还将与纽约州罗彻斯特的当地青年领导力和劳动力发展计划的目标是在夏季为来自弱势群体的学生提供环境研究和职业经验。沉积物颗粒的分析可能揭示了代理矿物中存在的重要元素,表明该地区某处可能存在重要的源岩。该项目探讨了两个问题:沉积物指纹中矿物质内的微量元素浓度可能是如果确实如此,是否可以使用颗粒的物理特性(例如形状和大小)来模拟沉积物的运输历史,以限制产生它的肥沃源的可能位置?这项工作的目的是通过利用河流沉积物进行勘探,结合 1) 高温实验室实验来表征锆石、石英和金红石化学,从而提高对未发现的关键富含矿物源岩的预测能力,以便将它们用作关键矿床的“指示矿物”和2)数值模拟和基于现场的沉积物示踪研究,将改进沉积物迁移距离和可行的关键矿源岩位置的预测。对于第一个目标,该团队将使用实验地球化学来确定。在含有关键元素的矿物存在下合成石英、锆石和金红石,这些实验将使研究人员能够确定目标指示矿物中不同关键元素的阈值浓度,这将表明第二个目标的丰富来源。研究人员将使用流体-颗粒耦合数值模型来根据颗粒形状和大小开发沉积物迁移距离的新统计分布。该团队还将使用带有 RFID 标签的岩石来跟踪两条天然河流中的沉积物迁移,以确定沉积物的大小和形状。这项基础工作将为未来开发一个综合模型奠定基础,该模型仅根据河流沉积物特性来预测关键矿源岩的位置,该模型的研究结果将超出矿物勘探的范围。生命周期中发生的过程沉积物从岩石中的诞生到通过河流系统的运输和降解,对地球物质的基本理解和地球表面的演化具有重要意义。该奖项是 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dustin Trail其他文献

A new experimental monazite-xenotime thermometer: Application to metamorphic environments
一种新的实验性独居石-磷钇矿温度计:在变质环境中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wriju Chowdhury;Dustin Trail
  • 通讯作者:
    Dustin Trail

Dustin Trail的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dustin Trail', 18)}}的其他基金

Collaborative Research: Tracing ca. 4 billion years of volatile cycling in magmas and fluids: insights from halogens in synthetic and natural zircons
合作研究:追踪大约。
  • 批准号:
    2240755
  • 财政年份:
    2023
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Standard Grant
Acquisition of Tabletop SEM for the University of Rochester Experimental Geochemistry Laboratory
为罗彻斯特大学实验地球化学实验室购置台式扫描电镜
  • 批准号:
    1940730
  • 财政年份:
    2020
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Standard Grant
CAREER: Accessory Minerals as Monitors of the Oxidation State of Magmas and Fluids and Enhancing Scientific Literacy Through Active Education
职业:副矿物作为岩浆和流体氧化状态的监测器,并通过积极教育提高科学素养
  • 批准号:
    1751903
  • 财政年份:
    2018
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Continuing Grant
NSFGEO-NERC: An Investigation into the Possible Co-evolution of Si and O Isotopes in Igneous Rocks and Minerals From the Hadean to Present
NSFGEO-NERC:对从冥宙至今火成岩和矿物中硅和氧同位素可能共同演化的研究
  • 批准号:
    1650033
  • 财政年份:
    2017
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Continuing Grant
Early Career: Technical support for the University of Rochester LA-ICP-MS and Experimental Geochemistry Laboratories
早期职业生涯:为罗切斯特大学 LA-ICP-MS 和实验地球化学实验室提供技术支持
  • 批准号:
    1545637
  • 财政年份:
    2016
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Continuing Grant
Light Element Investigations of Natural and Experimental Zircon
天然和实验锆石的轻元素研究
  • 批准号:
    1447404
  • 财政年份:
    2015
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

Hf对激光选区熔化CM247LC镍基高温合金裂纹形成与高温强韧性的作用机理
  • 批准号:
    52301060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CM-NTUs通过表观遗传修饰改写代谢编程以重塑谷氨酰胺代谢在骨关节炎中的作用及机制研究
  • 批准号:
    82330077
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
厘米尺寸新型超硬导电碳材料的高压制备与物性研究
  • 批准号:
    12374016
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
新型STAT3双磷酸化拮抗剂CM001抑制去势抵抗性前列腺癌(CRPC)的功能与机制研究
  • 批准号:
    82373146
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
提升10厘米氮氧工质ECRIT离子源推力及电离率的机理研究
  • 批准号:
    12375252
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

GEO-CM: Trace metals in sphalerite from polymetallic, porphyry-lode mineral deposits of southwest Montana
GEO-CM:来自蒙大拿州西南部多金属斑岩矿床的闪锌矿中的微量金属
  • 批准号:
    2327676
  • 财政年份:
    2024
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Standard Grant
大腿骨頭壊死症と老化関連因子の関連と壊死とMSC-CM投与の関連性
股骨头坏死与衰老相关因素的关系及股骨头坏死与MSC-CM给药的关系
  • 批准号:
    24K12304
  • 财政年份:
    2024
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GEO-CM: Biogeochemical Processes Affecting Critical Mineral Hosts in Mine Tailings and Weathered Ore Zones
GEO-CM:影响尾矿和风化矿带中关键矿物的生物地球化学过程
  • 批准号:
    2327617
  • 财政年份:
    2024
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Standard Grant
Synergy between future 21-cm experiments and physical cosmology
未来 21 厘米实验与物理宇宙学之间的协同作用
  • 批准号:
    DE240101129
  • 财政年份:
    2024
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Discovery Early Career Researcher Award
ウェアラブルEITと機械学習の融合技術による胃の高速・高精度イメージング
使用可穿戴 EIT 和机器学习技术对胃进行高速、高精度成像
  • 批准号:
    22KF0062
  • 财政年份:
    2023
  • 资助金额:
    $ 61.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了