CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
基本信息
- 批准号:2244976
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep neural networks (DNNs) have been a major driving force behind recent advances in data science and engineering. An emerging theme in DNN research is to exploit the intrinsic structure of the learning problems, such as symmetry, to improve the data-efficiency of DNNs in the small-data regime. Recent work on symmetry-preserving machine learning typically studies it in the ideal setting where the symmetry transformations are perfect, whereas in reality, however, they are usually “contaminated” by various sources of signal deformation. The aim of this project is to rigorously measure and guarantee the deformation robustness of general symmetry-preserving DNNs, as well as quantifying their resulting performance gain. Results of the research are expected to advance understanding of robust geometric deep learning, with a diverse range of applications from computer vision to scientific computing with limited data. The project will provide interdisciplinary training in applied mathematics, engineering, and data science to undergraduate and graduate students. The overarching theme of the project is to leverage mathematical tools from differential geometry, applied harmonic analysis, and applied probability to improve the statistical-efficiency of machine learning models. Special emphasis has been placed on the rigorous analysis and promotion of robust symmetry-preservation that is broadly applicable to arbitrary Lie group representations on general feature fields. In addition, the project aims to extend the idea of symmetry-preservation to deep distribution learning, and proposes a unified framework for data-efficient generation of distributions with intrinsic structures including—but not limited to—group symmetry; the improved statistical efficiency will be rigorously quantified through sample complexity analysis. The techniques to be developed in this project will be widely applicable across different disciplines, providing fundamental building blocks for the next generation of mathematical tools for the computational and geometric modeling of Big Data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络 (DNN) 一直是数据科学和工程最新进展的主要驱动力,DNN 研究的一个新兴主题是利用学习问题的内在结构(例如对称性)来提高 DNN 的数据效率。最近关于保对称机器学习的研究通常是在对称变换完美的理想环境中进行研究,但实际上,它们通常受到各种信号变形源的“污染”。该项目的目的是严格测量和保证一般保对称 DNN 的变形鲁棒性,并量化其所产生的性能增益,该研究结果有望促进对鲁棒几何深度学习的理解,并具有多种应用。该项目将为本科生和研究生提供应用数学、工程和数据科学方面的跨学科培训,该项目的首要主题是利用微分几何、应用调和分析等数学工具。应用概率来提高机器学习模型的统计效率。特别强调了广泛适用于一般特征域上的任意李群表示的严格分析和推广。深度分布学习的对称性保持,并提出了一个统一的框架,用于数据有效地生成具有内在结构的分布,包括但不限于组对称性;在此,将通过样本复杂性分析来严格量化改进的统计效率。该项目将广泛适用于不同学科,为大数据计算和几何建模的下一代数学工具提供基本构建模块。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Zhu其他文献
Erratum to Prevalence and clinical significance of pathogenic germline BRCA1/2 mutations in Chinese non-small cell lung cancer patients
中国非小细胞肺癌患者致病性种系BRCA1/2突变的患病率及临床意义勘误
- DOI:
10.20892/j.issn.2095-3941.2020.0029 - 发表时间:
2020-05-15 - 期刊:
- 影响因子:5.5
- 作者:
Xingsheng Hu;Dongyong Yang;Yalun Li;Li Li;Yan Wang;Peng Chen;Song Xu;X. Pu;Wei Zhu;P. Deng;Junyi Ye;Hanhan Zhang;A. Lizaso;Hao Liu;X. Mao;Hai Huang;Q. Chu;Chengping Hu - 通讯作者:
Chengping Hu
Discovery of Small Molecule Therapeutics for Treatment of Chronic HBV Infection.
发现治疗慢性乙型肝炎病毒感染的小分子疗法。
- DOI:
10.1021/acsinfecdis.7b00144 - 发表时间:
2018-01-25 - 期刊:
- 影响因子:5.3
- 作者:
S. Feng;Lu Gao;Xingchun Han;Taishan Hu;Yimin Hu;Haixia Liu;A. Thomas;Zhipeng Yan;Song Yang;J. Young;H. Yun;Wei Zhu;Hong C Shen - 通讯作者:
Hong C Shen
Cyclic reaction-induced enhancement in the dehydrogenation performances of the KNH2-doped LiNH2 and LiH system
循环反应诱导 KNH2 掺杂 LiNH2 和 LiH 体系脱氢性能的增强
- DOI:
10.1016/j.ijhydene.2019.09.109 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:7.2
- 作者:
Chao Ping;Bao;Jun Ge;Guang Li;Wei Zhu;Y. Teng;Ya;B. Dong - 通讯作者:
B. Dong
Continuous fibre reinforced Vat photopolymerisation (CONFIB-VAT)
连续纤维增强 VAT 光聚合 (CONFIB-VAT)
- DOI:
10.1016/j.addma.2022.103233 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:11
- 作者:
Yu Lu;Xiaoxiao Han;A. Gleadall;Feng;Wei Zhu;Liguo Zhao - 通讯作者:
Liguo Zhao
An Adaptive Inter Mode Decision for Multiview Video Coding
多视图视频编码的自适应帧间模式决策
- DOI:
10.1109/ism.2011.54 - 发表时间:
2011-12-05 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;Peng Chen;Yayu Zheng;Jie Feng - 通讯作者:
Jie Feng
Wei Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Zhu', 18)}}的其他基金
SBIR Phase II: A novel 3D bioprinting system for rapid high-throughput tissue fabrication
SBIR II 期:一种用于快速高通量组织制造的新型 3D 生物打印系统
- 批准号:
2035835 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Cooperative Agreement
EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
- 批准号:
2140982 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
- 批准号:
1952992 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
- 批准号:
2052525 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
SBIR Phase I: 3D Printing of Bisphenol A-free Polycarbonates for Customizable Cell/Tissue Culture Platforms
SBIR 第一阶段:用于可定制细胞/组织培养平台的不含双酚 A 的聚碳酸酯 3D 打印
- 批准号:
1819239 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Almgren's multiple-valued functions and geometric measure theory
阿尔姆格伦的多值函数和几何测度论
- 批准号:
0905347 - 财政年份:2009
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
- 批准号:42306167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
高效率强壮消息鉴别码的分析与设计
- 批准号:61202422
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
- 批准号:
BB/Y008758/1 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Research Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
RII Track-4:NSF: Exploring van der Waals Superconducting Josephson Junctions for Robust Qubits
RII Track-4:NSF:探索稳健量子位的范德华超导约瑟夫森结
- 批准号:
2327410 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant