RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module

RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器

基本信息

  • 批准号:
    2327474
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Electric vehicles (EVs) offer a crucial pathway to reduce carbon emissions in the transportation sector and mitigate global climate change. The traction inverter powers the vehicle’s movement and is considered the “heart” of an EV’s powertrain. A smaller, lighter, and more efficient traction inverter saves energy and extends the driving range of EVs. Additionally, high-temperature capability is essential to ensure reliable EV operation across a wider range of temperatures without damage or failure, reducing the need for bulky cooling systems. The aim of this project is to enhance the power density and operating temperature range of traction inverters by utilizing gallium oxide packaged power modules. Gallium oxide, an emerging ultra-wide bandgap semiconductor, has the potential to revolutionize power electronics with higher efficiency and superior operational temperatures due to its exceptional material properties. By eliminating technical barriers to gallium oxide device integration, this project will foster the development of the next generation of high-density, high-temperature power converters and promote the use of gallium oxide technology in automotive and other harsh environment applications. The fellowship will strengthen the PI’s multi-disciplinary research capabilities in semiconductor devices, multiphysics analysis, power module packaging, and high-performance power electronics. It will also provide hands-on laboratory experience to educate and train the next generation of electrical engineers in the field of wide and ultra-wide bandgap semiconductor devices, power electronics packaging, and conversion.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at the University of Arkansas. This work would be conducted in collaboration with researchers at the National Renewable Energy Laboratory. High-density, lightweight power electronics converters, especially those capable of operation at high ambient temperatures, are compellingly needed for automotive, aerospace, and space exploration applications. Gallium oxide emerges as a promising ultra-wide bandgap semiconductor material with a larger bandgap energy compared to conventional silicon and wide bandgap semiconductors. This advantageous characteristic enables high breakdown electrical strength, low intrinsic carrier concentration, and corresponding high operating temperatures, making it an ideal candidate for high-temperature, high-density power electronics. However, the low thermal conductivity of gallium oxide impedes efficient heat dissipation from the device junction, increasing thermal resistances in conventional packaging designs. In collaboration with researchers at the National Renewable Energy Laboratory, the PI will overcome these challenges associated with gallium oxide power module packaging and advance its application in high-power density and high-temperature power electronics converters. This project has three research objectives: (1) Innovate power module packaging techniques that optimize thermal resistances, minimize parasitic inductances, and enhance high-temperature operation capability; (2) Explore reliable gallium oxide power device gate driving and protection strategies to maximize device potential and increase reliability; and (3) Demonstrate a gallium oxide-based high-density and high-temperature traction inverter to validate and expedite the adoption of gallium oxide technology. The success of the project promises empirical insights into gallium oxide device modeling, packaging, gate driving, protection, and its application in power converters. Consequently, it will catalyze advancements in transport electrification and the deployment of gallium oxide technology within challenging environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电动汽车 (EV) 为减少交通运输领域的碳排放和缓解全球气候变化提供了重要途径,牵引逆变器为车辆的行驶提供动力,被认为是电动汽车动力系统的“心脏”,更小、更轻、更高效。牵引逆变器可以节省能源并延长电动汽车的行驶里程。此外,高温能力对于确保电动汽车在更广泛的温度范围内可靠运行而不会造成损坏或故障至关重要,从而减少对笨重冷却系统的需求。利用氧化镓封装功率模块来提高牵引逆变器的功率密度和工作温度范围氧化镓是一种新兴的超宽带隙半导体,由于其特殊的材料,具有更高的效率和优越的工作温度,有望彻底改变电力电子技术。通过消除氧化镓器件集成的技术障碍,该项目将促进下一代高密度、高温功率转换器的开发,并促进氧化镓技术在汽车和其他领域的使用。该奖学金将加强 PI 在半导体器件、多物理场分析、功率模块封装和高性能电力电子领域的多学科研究能力,还将提供实践实验室经验,以教育和培训下一代。宽带隙和超宽带隙半导体器件、电力电子封装和转换领域的电气工程师。该研究基础设施改进 Track-4 EPSCoR 研究人员 (RII Track-4) 项目将为助理教授提供奖学金,并为以下人员提供培训:研究生这项工作将与国家可再生能源实验室的研究人员合作进行,高密度、轻型电力电子转换器,特别是那些能够在高环境温度下运行的转换器,是汽车、航空航天和工业领域迫切需要的。与传统硅和宽带隙半导体相比,氧化镓作为一种有前途的超宽带隙半导体材料,具有更大的带隙能量,这种优势特性可实现高击穿电气强度、低本征载流子浓度和相应的高工作性能。温度,使其成为高温、高密度电力电子器件的理想选择。然而,氧化镓的低导热性阻碍了器件结的有效散热,从而增加了传统封装设计中的热阻。国家可再生能源实验室的负责人将克服这些与氧化镓功率模块封装相关的挑战,并推进其在高功率密度和高温电力电子转换器中的应用。该项目有三个研究目标: (1) 创新功率模块封装技术,优化热阻、最小化寄生电感并增强高温运行能力;(2) 探索可靠的氧化镓功率器件栅极驱动和保护策略,以最大限度地发挥器件潜力并提高可靠性; ) ) 展示基于氧化镓的高密度高温牵引逆变器,以验证和加速氧化镓技术的采用,该项目的成功经验有望为人们提供对镓的深入了解。氧化物器件建模、封装、栅极驱动、保护及其在电源转换器中的应用经过审查,它将促进运输电气化的进步以及氧化镓技术在充满挑战的环境中的部署。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoqing Song其他文献

Prognosis and predictive factors of partial seizures in children.
儿童部分性发作的预后和预测因素。
  • DOI:
    10.1016/j.pediatrneurol.2007.03.005
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zhiping Wang;Lei Qi;Xiaoqing Song
  • 通讯作者:
    Xiaoqing Song
Excess carrier mapping technique — A new parameter extraction method for 4H-SiC ambipolar power devices
过剩载流子映射技术——一种新的4H-SiC双极功率器件参数提取方法
Medium Voltage Single-Stage Dual Active Bridge Based Solid State Transformer (DABSST)
基于中压单级双有源桥的固态变压器 (DABSST)
Hierarchical protection architecture for 380V DC data center application
380V直流数据中心应用的分级保护架构
Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs.
果蝇 YBX1 同源物 YPS 通过优先识别 5-甲基胞嘧啶 RNA 促进卵巢生殖系干细胞发育。
  • DOI:
    10.1073/pnas.1910862117
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Zou;Renjun Tu;Bo Duan;Zhenlin Yang;Zhaohua Ping;Xiaoqing Song;Shiyuan Chen;Andrew Price;Hua Li;Allison Scott;Anoja Perera;Sisi Li;Ting Xie
  • 通讯作者:
    Ting Xie

Xiaoqing Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了