REU Site: Trust and Reproducibility of Intelligent Computation
REU 站点:智能计算的信任和可重复性
基本信息
- 批准号:2244492
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Research Experience for Undergraduates Site addresses the growing reality that modern society is increasingly dependent on complex software components to work as expected (trustworthy) and produce consistent results (reproducible). Trustworthiness and reproducibility govern adoption and acceptance of the results produced by software across a range of applications including medical diagnostics, facial recognition, traffic analysis, network security, and chemical reaction control. Computing educators are obliged to instill in the next generation of scientists and engineers -- today’s undergraduates -- an understanding of principled methods that enhance software system reliability, trustworthiness, and reproducibility. A typical undergraduate student is not sufficiently exposed to these concerns nor the aforesaid supportive methods, and yet they will be the ones building future intelligent systems. Thus, this REU site will address these issues, as well as emerging dangers such as introducing bias into AI-based applications or leaking personal data demand instruction in ethical considerations of software systems, another aspect of trustworthiness. Student participants will learn the state-of-the-art methods typically used in trustworthy and reproducible science and engineering. Weekly training and activity sessions will bring the entire cohort together for pre-packaged exercises, e.g., using Jupyter notebooks, software version control, automated defect detection, automatic performance analysis and optimization, and data analysis. These activities are deployed on one-of-a-kind, translational research platforms operated by the University of Utah, namely the NSF-funded Cloudlab and the POWDER project. Additional activities through the university’s Office of Undergraduate Research and the Utah Center for Inclusive Computing allow the researchers to offer workshops on research best practices, ethics, and inclusion. With a focus on applications that incorporate machine learning, achieve high efficiency, and the systems that support the applications, each undergraduate participant will work with a faculty mentor and their research group to complete a research project, producing both a written research report and a well-packaged artifact that, together, enable another person to understand the research, repeat the experiments, and reproduce the results. Students are selected to the program with the dual goals of broadening participation in computing and offering research experiences to students with severely limited opportunities at their home institutions. The program is assessed at the beginning and end, with an evaluation of how students applied their new understandings to their research projects, with follow-ups conducted as students apply to graduate school. The project plans to share these assessments and the curricular material with other institutions to propagate education in trustworthy and reproducible software to galvanize the next generation of scientists and engineers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该本科生研究体验网站解决了日益增长的现实,即现代社会越来越依赖复杂的软件组件来按预期工作(可信)并产生一致的结果(可重复)。可信度和可重复性决定了整个社会对软件产生的结果的采用和接受。计算机教育工作者有义务向下一代科学家和工程师(今天的本科生)灌输对增强软件系统的原则方法的理解。典型的本科生没有充分了解这些问题,也没有充分了解上述支持方法,但他们将是构建未来智能系统的人,因此,该 REU 网站将解决这些问题以及新兴问题。诸如在基于人工智能的应用程序中引入偏见或泄露个人数据等危险需要对软件系统的道德考虑进行指导,这是可信度的另一个方面,学生参与者将学习通常在可信赖和可重复的科学和工程中使用的最先进的方法。 。每周的培训和活动课程将把整个团队聚集在一起进行预先打包的练习,例如使用 Jupyter 笔记本、软件版本控制、自动缺陷检测、自动性能分析和优化以及数据分析。这些活动部署在其中之一上。犹他大学运营的一种转化研究平台,即 NSF 资助的 Cloudlab 和 POWDER 项目,通过大学本科生研究办公室和犹他州包容性计算中心开展的其他活动使研究人员能够举办研究研讨会。重点关注结合机器学习、实现高效率的应用程序以及支持应用程序的系统,每个本科生参与者将与导师及其研究小组合作完成一个研究项目,并产生成果。书面研究报告和精心包装的工件一起,使另一个人能够理解研究、重复实验并重现结果,学生被选入该项目的目的是扩大计算参与和提供研究。对在其所在机构机会严重有限的学生的经历进行评估。在开始和结束时,评估学生如何将他们的新理解应用到他们的研究项目中,并在学生申请研究生院时进行后续行动,该项目计划与其他机构分享这些评估和课程材料以宣传教育。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An NSF REU Site Based on Trust and Reproducibility of Intelligent Computation: Experience Report
基于智能计算的信任和可重复性的 NSF REU 站点:经验报告
- DOI:10.1145/3624062.3624100
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Hall, Mary;Gopalakrishnan, Ganesh;Eide, Eric;Cohoon, Johanna;Phillips, Jeff;Zhang, Mu;Elhabian, Shireen;Bhaskara, Aditya;Dam, Harvey;Yadrov, Artem;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh Gopalakrishnan其他文献
FTTN: Feature-Targeted Testing for Numerical Properties of NVIDIA & AMD Matrix Accelerators
FTTN:针对 NVIDIA 数值特性的特征测试
- DOI:
10.48550/arxiv.2403.00232 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:0
- 作者:
Xinyi Li;Ang Li;Bo Fang;Katarzyna Swirydowicz;Ignacio Laguna;Ganesh Gopalakrishnan - 通讯作者:
Ganesh Gopalakrishnan
Reliable Model Compression via Label-Preservation-Aware Loss Functions
通过标签保存感知损失函数实现可靠的模型压缩
- DOI:
10.1109/cvpr52688.2022.01012 - 发表时间:
2020-12-03 - 期刊:
- 影响因子:0
- 作者:
Vinu Joseph;Shoaib Ahmed Siddiqui;Aditya Bhaskara;Ganesh Gopalakrishnan;Saurav Muralidharan;M. Garl;Sheraz Ahmed;A. Dengel - 通讯作者:
A. Dengel
DOE/NSF Workshop on Correctness in Scientific Computing
DOE/NSF 科学计算正确性研讨会
- DOI:
10.48550/arxiv.2312.15640 - 发表时间:
2023-12-25 - 期刊:
- 影响因子:0
- 作者:
Maya Gokhale;Usa Lawrence Livermore National Laboratory;Ganesh Gopalakrishnan;Jackson Mayo;Cindy Rubio;Dept. STEPHEN F. SIEGEL - 通讯作者:
Dept. STEPHEN F. SIEGEL
A Programmable Approach to Neural Network Compression
神经网络压缩的可编程方法
- DOI:
10.1109/mm.2020.3012391 - 发表时间:
2019-11-06 - 期刊:
- 影响因子:3.6
- 作者:
Vinu Joseph;Ganesh Gopalakrishnan;Saurav Muralidharan;M. Garl;Animesh Garg - 通讯作者:
Animesh Garg
Weak behaviours and programming assumptions
弱行为和编程假设
- DOI:
10.1016/j.ymssp.2018.04.042 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:8.4
- 作者:
J. Alglave;Mark Batty;Alastair F. Donaldson;Ganesh Gopalakrishnan;J. Ketema;Daniel Poetzl;Tyler Sorensen;John Wickerson - 通讯作者:
John Wickerson
Ganesh Gopalakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh Gopalakrishnan', 18)}}的其他基金
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮点误差分析
- 批准号:
2319507 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track-1: Correctness at Both Ends: Rigorous ML Meets Efficient Sparse Implementations
协作研究:FMitF:Track-1:两端的正确性:严格的 ML 满足高效的稀疏实现
- 批准号:
2124100 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Practical and Rigorous Correctness Checking and Correctness Preservation for Irregular Parallel Programs
合作研究:SHF:Medium:不规则并行程序的实用且严格的正确性检查和正确性保持
- 批准号:
1956106 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
FMiTF: Track II: Rigorous and Versatile Float-Point Precision Analysis and Tuning
FMiTF:轨道 II:严格且多功能的浮点精度分析和调整
- 批准号:
1918497 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
SHF: Small: Indy: Toward Safe and Fast Compiler Flags
SHF:小:Indy:迈向安全快速的编译器标志
- 批准号:
1817073 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
SHF: Medium: Hierarchical Tuning of Floating-Point Computations
SHF:中:浮点计算的分层调整
- 批准号:
1704715 - 财政年份:2017
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
EAGER: Application-driven Data Precision Selection Methods
EAGER:应用驱动的数据精度选择方法
- 批准号:
1643056 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
2017 Software Infrastructure for Sustained Innovation (SI2) Principal Investigator Workshop
2017持续创新软件基础设施(SI2)首席研究员研讨会
- 批准号:
1702722 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
SI2-SSE: Scalable Multifaceted Graphical Processing Unit (GPU) Program Debugging
SI2-SSE:可扩展多方面图形处理单元 (GPU) 程序调试
- 批准号:
1535032 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
XPS: EXPL: CCA: Collaborative Research: Nixing Scale Bugs in HPC Applications
XPS:EXPL:CCA:协作研究:消除 HPC 应用程序中的规模错误
- 批准号:
1439002 - 财政年份:2014
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
东北阜新-锦州盆地及其他地点早白垩世晚期的两栖爬行类研究
- 批准号:
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:
面向多地点动态集结任务的空海无人系统智能协同控制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
User-centered approach to the development of a parent toolkit to improve willingness to participate in pediatric clinical research
以用户为中心的方法开发家长工具包,以提高参与儿科临床研究的意愿
- 批准号:
10663456 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Measuring Caregiver Networks of Older Adults with Alzheimer's Disease
测量患有阿尔茨海默病的老年人的护理人员网络
- 批准号:
10728621 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: