Fine tuning of structural and physical properties of transition metal halides by electrochemical intercalation

通过电化学插层微调过渡金属卤化物的结构和物理性质

基本信息

  • 批准号:
    2326843
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARY Intercalation chemistry, the process of ions moving in and out of a materials structure, lies at the center of how commercial Li-ion batteries work. The concept also is at the core of emerging technologies, including electrochromics, desalination, thermal switching and resistance switching materials. Regarding battery technology, oxide materials have been the intercalation materials of choice for a long time. Nevertheless, they suffer from degradations associated with ion intercalation that slowly deteriorate battery performance upon prolonged charge and discharge of the battery which limits the battery’s lifetime. For this project, which is supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, a new class of intercalation materials using chloride atoms, in place of oxygen, in the host structure, is synthetized. The reversibility of ions intercalation in halide materials is studied and compared with that in oxide materials, drawing structure-property relationship for this novel class of intercalation materials. The project provides new avenues to design more robust intercalation materials for Li-ion batteries. Additionally, outreach activities are organized as part of this project to engage with underserved communities, and educational opportunities are provided for undergraduate students which has the potential to develop further the US workforce. PART 2: TECHNICAL SUMMARY The objective of this research, which is supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, is to reveal the factors governing the electrochemical intercalation of alkali cations into transition metal halides, such that a future generation of Li- or Na-ion battery technologies can be developed. To this end, the principal investigator and his research group at Boston College carry out an experimental study combining the synthesis of novel lithium- or sodium-containing transition metal halides with measurements of the physical properties that govern their electrochemical (de)intercalation. The central hypothesis guiding this work is that layered halides can offer a fast alkali cation (de)intercalation while avoiding damaging structural transitions that plague the extraction of lithium or sodium from oxides at high potential. By mapping the chemical landscape that governs the redox chemistry of layered halides, this work seeks to lay the fundamental understanding to how ligand polarizability, size and electronegativity modify the redox properties of layered materials. Novel metastable polymorphs are synthetized and, by comparing their structural features and electrochemical response with that of more thermodynamically stable ones, competition existing between intra- and inter-layer interactions for intercalated layered halides can be revealed. Combined with electrical and magnetic measurements, the results are integrated to find out how cations intercalation impart the competition existing between inter- and intra-layer interactions in transition metal layered halides. Methodologies and knowledge gathered in this work serves to identify promising intercalation materials with tunable electronic properties. Collectively, this work advances redox chemistry of transition metal halides for rechargeable batteries and paves the way towards the development of new halide compounds. The research efforts are complemented by participating to outreach program serving underrepresented and underserved students in grade 8-12, and by engaging undergraduate student researchers in the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要插入化学,离子进出材料结构的过程位于商业锂离子电池的工作方式的中心。该概念也是新兴技术的核心,包括电染色体,淡化,热开关和电阻开关材料。关于电池技术,很长一段时间以来,氧化物材料一直是首选的插入材料。然而,它们患有与离子插入相关的降解,这些降解在延长电荷和电池电量时缓慢地确定了电池的性能,从而限制了电池的寿命。对于该项目,由NSF材料研究部的固态和材料化学计划支持,合成了使用氯化物原子的新型插入材料,代替氧气代替宿主结构中的氧气。离子在卤化物材料中的插入的可逆性进行了研究,并将其与氧化物材料中的相比,在这种新型的插入材料中绘制了结构性 - 主体关系。该项目提供了新的途径,可以为锂离子电池设计更强大的插入材料。此外,将外展活动作为该项目的一部分组织,以与服务不足的社区互动,并为本科生提供了教育机会,这些学生有可能进一步发展美国劳动力。第2部分:技术摘要这项研究的目的是由NSF材料研究部的固态和材料化学计划支持的,是为了揭示碱性位点电化学插入到过渡金属卤化物中的电化学互动的因素,从而可以开发出未来的Li-或Na-Ion电池技术。为此,波士顿学院的首席研究员及其研究小组进行了一项实验研究,结合了新型锂或钠或钠的过渡金属卤化物的合成,以及测量其电化学(DE)插入的物理特性。指导这项工作的中心假设是,分层卤化物可以提供快速的碱阳离子(DE)插入,同时避免了损害的结构过渡,这些跃迁困扰着锂或钠从氧化物中提取高潜力的。通过绘制控制分层卤化物的氧化还原化学的化学景观,这项工作旨在将基本的理解奠定,以使配体极化性,大小和电 - 仪性如何改变分层材料的氧化还原特性。新型亚稳态的多晶型物是合成的,通过将它们的结构特征和电化学响应与更热力学稳定的响应进行比较,可以揭示出在层间卤化物内和间间相互作用之间存在的竞争。结合电气测量和磁性测量结果,将结果整合在一起,以找出阳离子的插入如何在过渡金属分层卤化物中的间相互作用和层间相互作用之间赋予竞争。这项工作中收集的方法和知识旨在确定具有可调电子特性的承诺插入材料。总的来说,这项工作推动了过渡金属卤化物的氧化还原化学,用于可充电电池,并为开发新的卤化物化合物铺平了道路。研究工作是通过参加8-12年级的代表性不足和服务不足的学生的宣传计划完成的,并通过参与该项目的本科生研究人员来完成。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估而被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexis Grimaud其他文献

Porosity as a Morphology Marker to Probe the Degradation of IrO2 Anode Catalyst Layers in Proton Exchange Membrane Water Electrolyzers
孔隙率作为形态标志来探测质子交换膜水电解槽中 IrO2 阳极催化剂层的降解
  • DOI:
    10.1021/acs.chemmater.3c01524
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Silvia Duran;Alexis Grimaud;M. Faustini;J. Peron
  • 通讯作者:
    J. Peron
Alkaline electrolyzers: Powering industries and overcoming fundamental challenges
碱性电解槽:为工业提供动力并克服根本挑战
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    39.8
  • 作者:
    Nicolas Dubouis;David Aymé;D. Degoulange;Alexis Grimaud;Hubert Girault
  • 通讯作者:
    Hubert Girault

Alexis Grimaud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

可调谐MOF-纳米线复合网络微结构增强的双频谱联用肺癌检测研究
  • 批准号:
    12374342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于调谐波纹液柱阻尼器的大型风力发电塔架结构减振控制研究
  • 批准号:
    52368074
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
外尔半金属的光学Tamm态及其在微纳结构中电可调谐性研究
  • 批准号:
    12364024
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
长持时强震下考虑损伤分布的巨子结构被动自适应调谐研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长持时强震下考虑损伤分布的巨子结构被动自适应调谐研究
  • 批准号:
    52208487
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tuning PARP-1 retention and release on DNA breaks
调节 DNA 断裂时 PARP-1 的保留和释放
  • 批准号:
    10363534
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Toward a decrease in dietary crude protein in broilers: amino acids adjustment considering both structural and functional roles, fine tuning of mineral profile, and energy:protein
降低肉鸡日粮粗蛋白:考虑结构和功能作用的氨基酸调整、矿物质成分的微调以及能量:蛋白质
  • 批准号:
    543700-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative Research and Development Grants
Toward a decrease in dietary crude protein in broilers: amino acids adjustment considering both structural and functional roles, fine tuning of mineral profile, and energy:protein
降低肉鸡日粮粗蛋白:考虑结构和功能作用的氨基酸调整、矿物质成分的微调以及能量:蛋白质
  • 批准号:
    543700-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative Research and Development Grants
Collaborative Research: Structural and functional architecture shaping neural tuning within the human posterior superior temporal sulcus
合作研究:塑造人类颞上沟内神经调节的结构和功能架构
  • 批准号:
    1658560
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Structural and functional architecture shaping neural tuning within the human posterior superior temporal sulcus
合作研究:塑造人类颞上沟内神经调节的结构和功能架构
  • 批准号:
    1658278
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了