QuSeC-TAQS: Distributed Entangled Quantum-Enhanced Interferometric Imaging for Telescopy and Metrology

QuSeC-TAQS:用于望远镜和计量的分布式纠缠量子增强干涉成像

基本信息

  • 批准号:
    2326803
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Improved resolution in astronomical observations at radio frequencies has enabled scientists to make the first images of black hole event horizons and detailed images of quasars, as demonstrated by the Event Horizon Telescope (EHT) collaboration, providing new insights into the structure and dynamics of some of the most puzzling objects in the universe. However, many features of astronomical objects can only be observed in the visible range of the electromagnetic spectrum. Improved resolution in the visible regime would accelerate the search for exoplanets and the study of their atmospheres, enable resolved imaging of black hole event horizons in the near-infrared, and facilitate imaging of planet-forming disks and stellar surfaces beyond the Sun. The fundamental limit to the resolution of a telescope is set by the ratio of the wavelength of electromagnetic radiation detected and the diameter of the collection aperture, thus driving efforts to make large aperture telescopes. By bringing together the fields collected at distant apertures and interfering them, one can increase the effective aperture size of a telescope to the distance between the apertures. The EHT utilized a network of radio telescopes across the Earth, with separations on the order of thousands of kilometers, currently infeasible for visible wavelengths. This project aims to develop extended baseline interferometry in visible wavelengths by performing the first quantum-enabled imaging of astronomical objects. The goal is to pioneer the development of practical astronomical interferometers with quantum-enhanced performance. Recent theoretical proposals have shown that by interfering collected light from astronomical sources with entangled states of light distributed between distant telescopes can enable effective aperture sizes not possible with classical means. Proof-of-concept experiments in this project will verify the basic operating principles of a quantum-enabled imaging system that can ultimately be scaled up to demonstrate a quantum advantage over conventional systems, providing valuable insights for a larger-scale implementation. Theoretical work in this project is focused on modeling realistic experiments, developing benchmarking tools and metrics for comparing quantum and classical sensing strategies, and extending quantum protocols. Tabletop experiments with simulated astronomical sources will be used to verify theoretical bounds of quantum and classical performance, and demonstrate the first quantum-enabled interferometric imaging of astronomical sources. This project brings together an interdisciplinary team of experts from astronomy, electrical engineering, physics and quantum information science who will work convergently to perform the first quantum-enabled imaging of astronomical objects. The largest payoff in the long term would be the development of practical astronomical interferometers with quantum-enhanced performance opening a new window on the observable universe. Shorter-term outcomes will be a deeper understanding of distributed quantum optical sensing, which may be applicable in diverse scenarios. Moreover, the methods developed during the project will be applicable to a broad range of applications beyond astronomy. For example, distributing entanglement between the telescope apertures is highly relevant to quantum networking, distributed quantum computing, and quantum communications. This project supports the training of students in a multidisciplinary collaboration, the expansion and development of courses in quantum information science, and public outreach activities to encourage young people and minorities to explore science and technology. This project is funded by the NSF Quantum Sensing Challenges for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, the Division of Physics, and the Division of Astronomical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正如事件地平线范围望远镜(EHT)合作所证明的,在无线电频率下的天文观测分辨率改善使科学家们制作了黑洞事件视野的第一批图像和详细的类星体图像,从而为宇宙中一些最令人困惑的对象提供了新的见解。但是,只有在电磁谱的可见范围内才能观察到天文对象的许多特征。可见的策略中的分辨率提高将加速寻找系外行星及其大气的研究,可以在近红外的黑洞事件地平线上解决分解成像,并促进对行星形成的磁盘和恒星表面的成像。望远镜分辨率的基本限制是由检测到的电磁辐射的波长和收集孔径的直径设置的,因此推动了制造大型孔径望远镜的努力。通过将收集在远处的孔中收集的磁场组合在一起,并干扰它们,可以将望远镜的有效孔径大小增加到孔之间的距离。 EHT利用了整个地球的射电望远镜网络,其分离为数千公里,目前对于可见的波长来说是不可行的。该项目旨在通过执行对天文对象的第一个量子成像来开发可见波长中的扩展基线干涉法。目的是开拓实用的天文干涉仪以量子增强的性能的发展。最近的理论提案表明,通过干扰从天文来源的收集光,其纠缠的光在遥远望远镜之间分布的光状态可以通过经典手段使有效的孔径大小不可能。该项目中的概念验证实验将验证启用量子成像系统的基本操作原理,该系统最终可以扩展以证明比传统系统具有量子优势,从而为大规模实施提供了宝贵的见解。该项目中的理论工作集中在建模现实实验,开发基准测试工具和指标,以比较量子和经典感应策略以及扩展量子协议。具有模拟天文源的桌面实验将用于验证量子和经典性能的理论界限,并证明天文来源的第一个启用量子的干涉成像。该项目汇集了一个来自天文学,电气工程,物理和量子信息科学的专家跨学科团队,他们将互动地努力执行对天文对象的第一个量子成像。从长远来看,最大的回报是开发实用的天文干涉仪,其量子增强性能在可观察到的宇宙上打开了一个新窗口。较短的期望将对分布式量子光学传感进行更深入的了解,这可能适用于各种情况。此外,该项目期间开发的方法将适用于超越天文学的广泛应用。例如,在望远镜孔之间分配纠缠与量子网络,分布式量子计算和量子通信高度相关。该项目支持在跨学科合作,量子信息科学课程的扩展和开发以及公共宣传活动的培训,以鼓励年轻人和少数民族探索科学和技术。 该项目是由NSF量子传感挑战资助的量子系统(QUSEC-TAQS)计划,物理学部和天文学科学司的变革性进步的挑战。该奖项反映了NSF的法定任务,并被认为是通过该基金会的知识分子功能和广泛影响的评估来评估Criteria的评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Brian Smith其他文献

Rapid Raman microscopic imaging for potential histological screening
用于潜在组织学筛查的快速拉曼显微成像
Getting cultural heritage to work for Europe. Report of the Horizon 2020 Expert Group on Cultural Heritage. Brussels.
让文化遗产为欧洲服务。
  • DOI:
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Thurley;P. Busquin;M. Spek;Astrid Brandt;Guy Clausse;C. Gustafsson;J. Kolář;E. Lazarro;Brian Smith;F. Mallouchou
    S. Thurley;P. Busquin;M. Spek;Astrid Brandt;Guy Clausse;C. Gustafsson;J. Kolář;E. Lazarro;Brian Smith;F. Mallouchou
  • 通讯作者:
    F. Mallouchou
    F. Mallouchou
On revolution: Arendt, Locke and republican revisionism
论革命:阿伦特、洛克和共和修正主义
  • DOI:
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Smith
    Brian Smith
  • 通讯作者:
    Brian Smith
    Brian Smith
Ecosystem Stewardship: Sustainability Strategies for a Rapidly Changing Planet Ecosystem Stewardship: Sustainability Strategies for a Rapidly Changing Planet a Call for Ecosystem Stewardship Assessing and Reducing Vulnerability to Known Stresses Enhance Social Learning to Facilitate Adaptation Trans
生态系统管理:快速变化的地球的可持续发展战略 生态系统管理:快速变化的地球的可持续发展战略 呼吁生态系统管理 评估和减少已知压力的脆弱性 加强社会学习以促进适应
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Citation Chapin;Stephen R Carpenter;G. Kofinas;F. S. Chapin;F. S. Chapin;Carl Folke;Nick Abel;William C Clark;D. Olsson;Stafford Mark;Brian Smith;Oran R Walker;Fikret Young;Reinette Berkes;J. M. Biggs;Rosamond L Grove;Evelyn Naylor;Will Pinkerton;Frederick J Steffen;Swanson
    Citation Chapin;Stephen R Carpenter;G. Kofinas;F. S. Chapin;F. S. Chapin;Carl Folke;Nick Abel;William C Clark;D. Olsson;Stafford Mark;Brian Smith;Oran R Walker;Fikret Young;Reinette Berkes;J. M. Biggs;Rosamond L Grove;Evelyn Naylor;Will Pinkerton;Frederick J Steffen;Swanson
  • 通讯作者:
    Swanson
    Swanson
Reliability Analysis for Inserts in Sandwich Composites
夹层复合材料中刀片的可靠性分析
  • DOI:
  • 发表时间:
    2011
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Banerjee;Brian Smith
    B. Banerjee;Brian Smith
  • 通讯作者:
    Brian Smith
    Brian Smith
共 82 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 17
前往

Brian Smith的其他基金

CAREER: Making Digital Imagery Accessible to Blind and Low-Vision Users via Audiohaptic Dioramas
职业:通过视听立体模型让盲人和弱视用户可以访问数字图像
  • 批准号:
    2339788
    2339788
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Multimode Continuous-Variable Quantum Optics for Precision Sensing
用于精密传感的多模连续可变量子光学器件
  • 批准号:
    2207767
    2207767
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Reversible modification of methionine as a mechanism to regualte protein function in the mitochondrion and secretory pathway
蛋氨酸的可逆修饰作为调节线粒体和分泌途径中蛋白质功能的机制
  • 批准号:
    BB/V001183/1
    BB/V001183/1
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Research Grant
    Research Grant
Temporal Multimode Transformations for Quantum Information Science
量子信息科学的时态多模变换
  • 批准号:
    2112900
    2112900
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Standard Grant
    Standard Grant
QuIC-TAQS: Implementation of a Neutral-Atom-Photonic-Cluster State
QuIC-TAQS:中性原子光子团簇态的实现
  • 批准号:
    2138068
    2138068
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CRCNS US-France Research Proposal: Collaborative Research: Encoding reward expectation in Drosophilia
CRCNS 美国-法国研究提案:合作研究:编码果蝇奖励期望
  • 批准号:
    2113179
    2113179
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: All Birds: A Time-scaled Avian Tree From Integrated Phylogenomic and Fossil Data
合作研究:所有鸟类:来自综合系统基因组和化石数据的时间尺度鸟类树
  • 批准号:
    1655736
    1655736
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Mapping and Tracking Conformational Control of Nitric Oxide Synthase Activation
合作研究:绘制和跟踪一氧化氮合酶激活的构象控制
  • 批准号:
    1708829
    1708829
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Temporal-Spectral Multimode Photonics for Quantum Information Science
用于量子信息科学的时谱多模光子学
  • 批准号:
    1620822
    1620822
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Ideas Lab Collaborative Research: Using Natural Odor Stimuli to Crack the Olfactory Code
创意实验室合作研究:利用自然气味刺激破解嗅觉密码
  • 批准号:
    1556337
    1556337
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
  • 批准号:
    42372240
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
  • 批准号:
    42272154
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
  • 批准号:
    41903018
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
  • 批准号:
    41762015
  • 批准年份:
    2017
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
  • 批准号:
    41672186
  • 批准年份:
    2016
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Standard Grant
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Standard Grant
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
    $ 100万
  • 项目类别:
    Continuing Grant
    Continuing Grant