Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation

合作研究:DMREF:用于选择性键激活的原子精确催化剂设计

基本信息

  • 批准号:
    2323701
  • 负责人:
  • 金额:
    $ 53.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

The project develops a design methodology for supported single-atom catalysts (SACs) – an emerging class of supported single metal-atom catalysts that offer exciting and emergent properties that can revolutionize many industrial applications. The realization of their full potential is hindered by limited understanding of how to control their stability and catalytic properties within the complex material design space extending across the properties of the metal atoms and supporting material, together with interactions between the two. To overcome this challenge, the project embraces a highly-integrated, computational-experimental methodology using machine learning techniques (ML) to leverage the support material as a ligand to regulate the geometric and electronic properties of the metal site and improve its stability. The model predictions will guide the synthesis, characterization and catalytic measurements to enable selective bond activation. The proposed methodology can profoundly impact the discovery of complex materials for challenging chemical reactions. The design of stable, active, and selective catalysts, while maximizing the metal utilization at the single-atom level, can significantly reduce capital costs and energy consumption, leading to lower CO2 emissions, reduced production of harmful byproducts, and more responsible utilization of hydrocarbon feedstocks. The interdisciplinary nature of this research and the integration of research and education plans between the three institutions will lead to a cadre of students obtaining a unique educational experience in heterogeneous catalysis, multiscale modeling, and advanced lab- and synchrotron-based characterization techniques. Furthermore, the project will develop educational materials for outreach programs targeting K-12 students with focused efforts to increase the participation of underrepresented students in STEM fields.The project incorporates a conceptual framework centered on artificial intelligence (AI) and multiscale modeling-based methodologies to build guiding principles that can be leveraged to predict highly active, stable, and selective metal-support compositions. The model predictions will guide the synthesis of single-metal atoms supported on novel, high-surface-area unconventional support materials (perovskites and spinels) by atomic layer deposition, followed by detailed characterization of their properties, catalyst evaluation, and model assessment and refinement (thus enabling an efficient catalyst discovery/design loop). By uncovering physics-inspired descriptors and harnessing the capabilities of machine learning, the project aims to predict how the surface composition of the oxide support and the local cation environment at the metal site influence stability, activity, and selectivity. The developed methods and models will be evaluated with respect to two complex industrially relevant reactions: 1) water-gas shift, and 2) hydrodeoxygenation (HDO) of cresol to toluene. The former focuses primarily on maximizing reaction rate, while the latter addresses both activity and selectivity challenges. The outcome of this research will serve as a foundational methodology for designing new materials in silico.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一种负载型单原子催化剂(SAC)的设计方法,这是一类新兴的负载型单金属原子催化剂,它提供了令人兴奋的新兴特性,可以彻底改变许多工业应用,但由于了解有限,阻碍了其全部潜力的实现。如何在复杂的材料设计空间中控制它们的稳定性和催化性能,延伸到金属原子和支撑材料的性能,以及两者之间的相互作用。为了克服这一挑战,该项目采用了高度集成的、使用机器学习技术(ML)的计算实验方法,利用支撑材料作为配体来调节金属位点的几何和电子特性并提高其稳定性。模型预测将指导合成、表征和催化测量,以实现选择性。所提出的方法可以深刻影响用于具有挑战性的化学反应的复杂材料的发现,同时最大限度地提高单原子水平的金属利用率,可以显着降低资本成本和能源消耗。 ,从而降低二氧化碳排放量这项研究的跨学科性质以及三个机构之间研究和教育计划的整合将导致一批学生获得多相催化方面的独特教育经验。此外,该项目还将开发针对 K-12 学生的外展项目的教育材料,重点是增加 STEM 领域代表性不足的学生的参与。结合了以人工智能(AI)和基于多尺度建模的方法为中心的概念框架,以建立可用于预测高活性、稳定和选择性金属载体成分的指导原则。该模型预测将指导单金属的合成。通过原子层沉积将原子负载在新型高表面积非常规支撑材料(钙钛矿和尖晶石)上,然后对其性能进行详细表征、催化剂评估以及模型评估和细化(从而实现高效的催化剂发现/设计通过揭示物理启发的描述符并利用机器学习的能力,该项目旨在预测氧化物载体的表面组成和金属位点的局部阳离子环境如何影响稳定性、活性和选择性。模型将针对两个复杂的工业相关反应进行评估:1)水煤气变换和2)甲酚加氢脱氧(HDO)生成甲苯。前者主要侧重于最大化反应速率,而后者则涉及活性和甲苯。这项研究的成果将作为计算机设计新材料的基础方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Vohs其他文献

High CO2 Selectivity of ZnO Powder Catalysts for Methanol Steam Reforming
用于甲醇蒸汽重整的 ZnO 粉末催化剂的高 CO2 选择性
  • DOI:
    10.1021/jp308976u
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    John Vohs;Yong Wang;Hua Guo;Abhaya K Datye
  • 通讯作者:
    Abhaya K Datye

John Vohs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Vohs', 18)}}的其他基金

UNS: Mechanistic Studies of Hydrodeoxygenation of Lignin-Derived Aromatic Oxygenates over Bimetallic Catalysts
UNS:双金属催化剂上木质素衍生芳香族含氧化合物加氢脱氧的机理研究
  • 批准号:
    1508048
  • 财政年份:
    2015
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Materials World Network: Tailoring Electrocatalytic Materials by Controlled Surface Exsolution
材料世界网络:通过控制表面溶出定制电催化材料
  • 批准号:
    1210388
  • 财政年份:
    2012
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Continuing Grant
Thermodynamic Measurements of Redox Properties of Supported Oxide Catalysts
负载型氧化物催化剂氧化还原性能的热力学测量
  • 批准号:
    0625324
  • 财政年份:
    2006
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Fundamental Studies of the Origin of Support Effects in Supported Monolayer Vanadia Catalysts
负载型单层氧化钒催化剂负载效应起源的基础研究
  • 批准号:
    0139613
  • 财政年份:
    2002
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Surface Science Studies of Model Supported Vanadia Catalysts
模型支持的氧化钒催化剂的表面科学研究
  • 批准号:
    9712774
  • 财政年份:
    1998
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Effect of Substrate Surface Microstructure on the Metalorganic Molecular Beam Epitaxy (MOMBE) Growth of Zinc Selenide on the (100) Face of Gallium Arsenide
衬底表面微观结构对砷化镓(100)面金属有机分子束外延(MOMBE)生长硒化锌的影响
  • 批准号:
    9321341
  • 财政年份:
    1994
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Continuing Grant
Development of an HREELS Analysis System for the Study of Polymers, Semiconductors, and Metal-Oxides
开发用于研究聚合物、半导体和金属氧化物的 HREELS 分析系统
  • 批准号:
    9303459
  • 财政年份:
    1993
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
"Engineering Research Equipment Grant: High-Resolution Electron Energy Loss Spectrometer"
《工程研究装备补助金:高分辨率电子能量损失谱仪》
  • 批准号:
    9005485
  • 财政年份:
    1990
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Presidential Young Investigator: Growth of II-VI Compound Semiconductors Using Metalakyl Precursors.
总统青年研究员:使用金属烷基前体生长 II-VI 化合物半导体。
  • 批准号:
    8957056
  • 财政年份:
    1989
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Continuing Grant
NATO Postdoctoral Fellow
北约博士后研究员
  • 批准号:
    8751164
  • 财政年份:
    1987
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Fellowship Award

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 53.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了