EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
基本信息
- 批准号:2240501
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of information processing has witnessed remarkable advancements, driven by both traditional computing technology and emerging quantum computing paradigms. Modern information processing technology, represented by classical computers, has revolutionized our lives, enabling us to connect with others, access vast amounts of information, and perform complex tasks efficiently. In parallel, quantum information processing has emerged as a promising frontier that offers unique capabilities beyond the classical limit. While still in its early stages, quantum information processing is poised to show great benefit for society in pursuits of optimizing logistical operations, discovery of novel medicines, and the preservation of secure communication of importance for national security. One of the major challenges in realizing practical quantum devices lies in scaling the number of quantum components on a platform. The proposed project aims to solve this problem by developing a new technology which rely on information carrying photons guided to an array of superconducting detectors to achieve a highly scalable device. Moreover, this project aims to contribute to the advancement of manufacturing techniques for quantum devices, fostering innovation and economic growth. By supporting this proposal, the National Science Foundation (NSF) will play a pivotal role in accelerating the development of quantum technology and positioning the United States at the forefront of this rapidly evolving field. Furthermore, the project will provide opportunities for education and diversity, as it will involve collaborations with academic institutions, training of students, and the promotion of interdisciplinary research.The research proposed here aims to address challenges in quantum photonic integrated circuits (QPICs) by integrating silicon-based waveguides with Microwave Kinetic Inductance Detectors (MKIDs) to pioneer a scalable quantum information processor. The proposed approach seeks to overcome challenges in size, efficiencies, and scale by leveraging the frequency multiplexed readout inherent to kinetic inductance detectors, allowing large arrays to be lithographed with standard CMOS fabrication techniques. Using the evanescent field to facilitate optical information coupling between detectors and waveguides will significantly enhance detector efficiencies, while concurrently reducing size, weight, and cost by replacing table-top optical experiments with this innovative on-chip approach. The project's primary goals include the development of a robust and reliable fabrication process for integrating MKIDs with photonic circuits, the characterization of their performance in terms of system efficiencies, photon energy, number, and timing resolution, and the evaluation of their scalability potential. The research will involve a combination of theoretical modeling, device design, and extensive nanofabrication investigations. The intellectual significance of this project lies in the transformative impact it can have on the field of quantum technology, building up the technological framework required for large-scale, efficient, and reliable QPICs. Furthermore, this research will contribute to advancing the manufacturing techniques for quantum devices, thereby facilitating the translation of fundamental scientific advancements into practical applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在传统计算技术和新兴量子计算范式的推动下,信息处理领域取得了显着的进步。以经典计算机为代表的现代信息处理技术彻底改变了我们的生活,使我们能够与他人联系、访问大量信息并高效地执行复杂的任务。与此同时,量子信息处理已成为一个有前途的前沿领域,它提供了超越经典极限的独特功能。尽管仍处于早期阶段,但量子信息处理有望在优化物流运作、发现新药物以及维护对国家安全至关重要的安全通信方面为社会带来巨大利益。实现实用量子设备的主要挑战之一在于扩展平台上量子组件的数量。该项目旨在通过开发一种新技术来解决这个问题,该技术依靠引导至超导探测器阵列的信息携带光子来实现高度可扩展的设备。此外,该项目旨在促进量子设备制造技术的进步,促进创新和经济增长。通过支持这一提案,美国国家科学基金会(NSF)将在加速量子技术的发展并使美国处于这一快速发展领域的前沿方面发挥关键作用。此外,该项目还将提供教育和多样性的机会,因为它将涉及与学术机构的合作、学生培训以及促进跨学科研究。这里提出的研究旨在通过整合量子光子集成电路(QPIC)来应对量子光子集成电路(QPIC)的挑战带有微波动感电感探测器(MKID)的硅基波导开创了可扩展的量子信息处理器。所提出的方法旨在通过利用动感电感探测器固有的频率复用读出来克服尺寸、效率和规模方面的挑战,从而允许使用标准 CMOS 制造技术对大型阵列进行光刻。使用渐逝场促进探测器和波导之间的光学信息耦合将显着提高探测器效率,同时通过用这种创新的片上方法取代桌面光学实验来减小尺寸、重量和成本。该项目的主要目标包括开发稳健可靠的制造工艺,用于将 MKID 与光子电路集成,表征其在系统效率、光子能量、数量和定时分辨率方面的性能,以及评估其可扩展潜力。该研究将结合理论建模、设备设计和广泛的纳米制造研究。该项目的智力意义在于它可以对量子技术领域产生变革性影响,构建大规模、高效、可靠的QPIC所需的技术框架。此外,这项研究将有助于推进量子器件的制造技术,从而促进基础科学进步转化为实际应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Mazin其他文献
Benjamin Mazin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Mazin', 18)}}的其他基金
High Resolution Multi-Object Fiber-Fed Spectroscopy with Microwave Kinetic Inductance Detectors
具有微波动感电感探测器的高分辨率多目标光纤馈电光谱学
- 批准号:
2108651 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710385 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Understanding Pulsar Emission with ARCONS, the first ground-based instrument to use revolutionary cryogenic detectors
使用 ARCONS 了解脉冲星发射,ARCONS 是首款使用革命性低温探测器的地面仪器
- 批准号:
1411613 - 财政年份:2014
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
DARKNESS: Dark-Speckle Near-IR Energy-resolved Superconducting Spectrophotometer
DARKNESS:暗斑近红外能量分辨超导分光光度计
- 批准号:
1308556 - 财政年份:2013
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
相似国自然基金
自陷域激子量子点能带工程及其光学性质研究
- 批准号:22371090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
量子引力效应及其天体物理检验
- 批准号:12375049
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
二维量子材料异质结中摩尔超晶格重构和摩尔激子相互作用的高压调控
- 批准号:12304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多体量子电动力学理论与应用
- 批准号:22373057
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
- 批准号:
2240414 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Developing a Deterministic, 3D Printer for Quantum Defects
EAGER:量子制造:开发用于量子缺陷的确定性 3D 打印机
- 批准号:
2240479 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: In-situ Nano-Patterned Topological Josephson Junctions
EAGER:量子制造:原位纳米图案拓扑约瑟夫森结
- 批准号:
2240489 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
- 批准号:
2240227 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant