Accurately mapping the seismic structure of the deep crust of the continental United States
准确绘制美国大陆深部地壳的地震结构图
基本信息
- 批准号:2322632
- 负责人:
- 金额:$ 31.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Continental crust, the outermost layer of the solid Earth, plays a vital role in understanding the Earth system: it bears important information about the Earth’s natural resources, such as critical minerals; its thickness controls the first order changes in elevation and landscape evolution; it serves as a pathway for material exchange between the shallow crust and overlying mantle, and where magma rises through; its composition and temperature bear the signature of the early history of continents and controls the distributions of the geotherms. Finally, its strength and dynamics dominate the distributions of natural hazards such as earthquakes. However, accurately inferring its physical properties, especially for its deep part, has been challenging due to the lack of direct access through drilling and insufficient indirect sampling. Using seismic energies that travel through the deep crust, on the other hand, can provide systematic sampling to the deep crust and allow a continental-scale measurement of its physical properties such as thickness. This research addresses challenges in measuring the deep crustal properties by improving traditional seismic methods so they rely less on assumptions about deep crustal conditions. Additionally, the researcher will incorporate newly obtained measurements to provide further information about the deeper part of the crust, which will help infer the elastic properties that are sensitive to the composition and strength. Finally, these novel techniques will be applied to data collected throughout the continental United States through the EarthScope USArray to illuminate the continental-scale deep crustal structure of the contiguous US. The research will support a graduate student. Research opportunities will also open to students from community colleges in the Long Island and NYC area. Additional K-12 outreach will be performed by collaborating with the NSF-funded EarthBUS project.The research target, the continental crust, especially the mid- and lower parts, plays a crucial role in Earth Sciences as 1) its lower boundary (Moho) controls the 1st order of topographic variation and its evolution, 2) it serves as a pathway for material exchange between the shallow crust and mantle, and where magma rises through; 3) its composition bears the signature of the early history of continents; and 4) its temperature controls the distributions of the geotherm and surface heat flux. The project aims to better map out the deep crustal structures beneath the continental US. Elastic properties of the deep crust (e.g., Moho depth, depth-dependent seismic velocity, and Poisson’s ratio) indicate the thermal and compositional properties but are often challenging to measure accurately. Of particular interest is the Poisson’s ratio of the deep crust, as it is indicative of the abundance of quartz content, and thus plays a crucial role in determining the chemical composition and strength of the crust. In this project, a phased, 3-stage research will be conducted: First, a novel method that combines the strengths of two traditional seismic imaging techniques to solve the velocity-depth trade-offs comprehensively will be developed and tested; Secondly, a new seismic observable, Rayleigh wave local amplification, will be further incorporated to provide depth-dependent information of the Poisson’s ratio; Finally, these novel techniques will be applied to data from the EarthScope USArray, to illuminate the continental-scale deep crustal structure of the continental US. Preliminary tests of the new methods with synthetic data present a promising sign of solving the challenges. The research will address challenges in measuring the deep crustal properties due to the trade-offs in different seismic observables and a lack of data sensitivity. This work will accurately map out the contiguous US's deep crustal structure at a continental scale. The product of the research work, a new three dimensional (3-D) model of the crust and uppermost mantle beneath the continental US, will deepen the understanding of deep geological processes; It also provides insights into how Poisson’s ratio varies with depth, adding an important seismic constraint that can potentially solve for the chemical composition and strength of the continents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大陆地壳是固体地球的最外层,在理解地球系统中起着至关重要的作用:它具有有关地球自然资源的重要信息,例如关键的稀有性;它的厚度控制着海拔和景观演变的一阶变化;它是在浅层地壳和上覆的地幔之间以及岩浆升起的地方交换物质的途径;它的组成和温度具有大陆早期历史的特征,并控制地理的分布。最后,它的力量和动态主导着自然危害(例如地震)的分布。但是,由于缺乏通过钻井和间接抽样不足的直接访问,因此,准确推断其物理特性,尤其是在其深处,受到了挑战。另一方面,使用穿过深层外壳的地震能可以为深层外壳提供系统的采样,并允许大陆规模的测量构成其物理特性(例如厚度)。这项研究通过改进传统的地震方法来衡量深层地壳特性的挑战,从而减少了对深层地壳条件的假设。此外,研究人员将结合新获得的测量值,以提供有关地壳更深部分的进一步信息,这将有助于推断对组成和强度敏感的弹性特性。最后,这些新型技术将应用于在整个地球上收集的数据,以阐明连续美国的连续尺度深层地壳结构。研究机会也将向来自长岛和纽约市社区大学的学生开放。 Additional K-12 outreach will be performed by collaborating with the NSF-funded EarthBUS project.The research target, the continuous crust, especially the mid- and lower parts, plays a crucial role in Earth Sciences as 1) its lower boundary (Moho) controls the 1st order of topographic variation and its evolution, 2) it serves as a pathway for material exchange between the shallow crust and mantle, and where magma rises through; 3)其组成带有延续早期历史的签名; 4)其温度控制地热和表面热通量的分布。该项目旨在更好地绘制出连续我们下方的深层地壳结构。深层地壳(例如Moho深度,深度依赖性地震速度和Poisson的比例)的弹性特性表示热和复合特性,但通常受到挑战以准确测量。特别令人感兴趣的是泊松的深层托架比,因为它表明了石英含量的抽象,因此在确定地壳的化学组成和强度方面起着至关重要的作用。在这个项目中,将进行一项分阶段的三阶段研究:首先,一种新颖的方法,结合了两种传统的地震成像技术的优势,以全面地解决速度深度折衷,并将经过全面的开发和测试;其次,将进一步纳入可观察到的新的可观察的雷利浪潮局部放大,以提供泊松比的深度依赖性信息。最后,这些新颖的技术将应用于Earthscope UsArray的数据,以阐明连续tal的连续尺度的深层地壳结构。与合成数据的新方法的初步测试提出了解决挑战的希望。这项研究将解决由于不同地震可观察到的折衷和缺乏数据敏感性的权衡而导致的深层地壳特性的挑战。这项工作将以连续的比例准确地绘制出连续的美国深层结构。研究工作的产物是地壳和最高地幔的新的三维(3-D)模型,将加深对深层地质过程的理解。它还提供了有关Poisson比率如何随深度变化的见解,增加了一个重要的地震约束,可以潜在地解决连续性的化学成分和强度。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weisen Shen其他文献
Three‐Dimensional Crustal Structures of the Shanxi Rift Constructed by Rayleigh Wave Dispersion Curves and Ellipticity: Implication for Sedimentation, Intraplate Volcanism, and Seismicity
瑞利波色散曲线和椭圆度构建的山西裂谷三维地壳结构:对沉积、板内火山活动和地震活动的影响
- DOI:
10.1029/2020jb020146 - 发表时间:
2020-11 - 期刊:
- 影响因子:0
- 作者:
Hongrui Xu;Yinhe Luo;Yingjie Yang;Weisen Shen;Xiaofei Yin;Guoxiong Chen;Xiaozhou Yang;Shida Sun - 通讯作者:
Shida Sun
Weisen Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weisen Shen', 18)}}的其他基金
CAREER: A Comprehensive Seismic Investigation to the Crust and Uppermost Mantle Beneath the South Pole, East Antarctica
职业:对南极洲东部南极地壳和上地幔进行全面的地震调查
- 批准号:
2145410 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Standard Grant
Conference: An International Workshop on the Future of Geodetic-geophysical Observational Networks in Antarctica
会议:南极洲大地测量-地球物理观测网络的未来国际研讨会
- 批准号:
2235061 - 财政年份:2022
- 资助金额:
$ 31.36万 - 项目类别:
Standard Grant
Collaborative Research: Seismic Investigation of the Sub-ice Environment and Crustal Composition of Antarctica
合作研究:南极冰下环境和地壳组成的地震调查
- 批准号:
1945856 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别:
Standard Grant
相似国自然基金
基于磁-热场映射参数解耦辨识的永磁体健康状态监测方法研究
- 批准号:52307048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向状态修的高速列车转向架焊接构架疲劳剩余寿命与载荷谱映射机制研究
- 批准号:52375160
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于“皮质-皮质”协同刺激长程调控皮质下卒中后受损核团重映射的机制研究
- 批准号:82302871
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
综采放顶煤围岩-支架位姿-放煤性能调控映射规律研究
- 批准号:52374207
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高速钢轨应力和微裂纹的磁信号映射机制及在线检测方法研究
- 批准号:52305588
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mapping of crustal strength of Japan: Bayesian-based unified estimation of seismic velocity and density structures
日本地壳强度绘图:基于贝叶斯的地震速度和密度结构统一估计
- 批准号:
23K13197 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mapping plant functional types on seismic lines in northern Alberta using remotely piloted aircraft systems (RPAS)
使用遥控飞机系统 (RPAS) 绘制阿尔伯塔省北部地震线上的工厂功能类型图
- 批准号:
575413-2022 - 财政年份:2022
- 资助金额:
$ 31.36万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Active fault mapping and seismic hazard evaluation of Ulaanbaatar, Mongolia
蒙古乌兰巴托活动断层测绘及地震危险性评估
- 批准号:
21H04374 - 财政年份:2021
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
IRES Track I: Mapping and Assessing the Seismic Hazard of the Guanacaste Tectonic Sliver, Costa Rica
IRES 第一轨:哥斯达黎加瓜纳卡斯特构造带的地震危害测绘和评估
- 批准号:
2106712 - 财政年份:2021
- 资助金额:
$ 31.36万 - 项目类别:
Standard Grant
Collaborative Research: Mapping and Understanding Seismic Anisotropy in the Northeast Pacific Ocean
合作研究:绘制和了解东北太平洋地震各向异性
- 批准号:
1830991 - 财政年份:2020
- 资助金额:
$ 31.36万 - 项目类别:
Continuing Grant