Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
基本信息
- 批准号:2322600
- 负责人:
- 金额:$ 38.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The world around us is increasingly surrounded by electronic sensors. For applications such as wearable and implantable biomedical sensors there is a particular need and opportunity for unobtrusive microdevices which operate autonomously as large ensembles to map physiological activity across a body area of interest. A challenge is how to construct a wireless network whereby data from a microsensor population is transmitted, received, and decoded to unravel data, say from 1000 individual sensors. A rough analogy is that of a population of common radio-frequency tags which must be read at once by a single transceiver - with the twist that signals at each sensor location will now vary both in time and in magnitude. A brain-computer interface suggests a paradigm in this context: how to capture neuronal signals at high resolution by a population of autonomous brain implanted microsensors. Ongoing research for development of brain-machine interfaces in laboratories worldwide is focused on a number of schemes where access to thousands of points in the cortex is sought to translate brain computations to useful electronic commands e.g. for intended speech. The neurotechnology problem is three-fold: to record electrical signals from the brain unobtrusively, to transmit the data wirelessly to a body external receiver, and to decipher the multitude of signals in real time. Many cases of distributed sensing of a dynamical environment are characterized by sparsity of events whether in nature or man-made systems, neurons in the brain being an example. The proposed event-driven communication strategy enables the efficient transmission, accurate retrieval, and interpretation of sparse events across a network of thousands of wireless microsensors – using the brain as an inspiration. The proposed work is focused on an all-in-one approach to build a large scale wireless microsensor radio-frequency network. An external transceiver collects data while supplying wireless power to the sensors. Each sensor is a sub-millimeter size silicon system-on-microchip with custom circuitry designed for ‘event detection’ where time-varying sensor inputs are encoded as a series of short ‘spikes’. The brain-inspired method of encoding data from sparse events has emerged recently in so- called dynamic vision cameras. Spike train data are converted into digital form on chip and transmitted to one common receiver. Since only the event-driven spikes are transmitted through the network, the bandwidth of the communication system can be utilized very efficiently enabling a large population of sensors to be incorporated into the network.The team proposes to build a microsensor system and demonstrate low-error rate and efficient asynchronous, encoded wireless transmission in the laboratory using fabricated microchips, and to show extended applicability to thousands of nodes though simulations.Importantly, the event-sensing detection and wireless communication approach is quite suited for a neuromorphic computational approach for analyzing multisensory data; the third key element in the project. The team will show how to decode actual brain data (synthesized elsewhere from actual primate brain recordings) from a hypothetical implant composed of up to 8000 microsensors. Neuromorphic computing appears particularly suited decoding event-based data in terms of efficiency and short latency. Using available data from the primate motor cortex the team plans to show how to decode wireless signals from thousands of neurons for the prediction of planned arm and hand movement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们周围的世界越来越被电子传感器所包围。对于诸如可穿戴和植入生物医学传感器之类的应用,对于不引人注目的微发行版,它们具有特殊的需求和机会,这些速度是自主运行的,就像大型合奏以绘制跨感兴趣的身体区域的体育活动一样。一个挑战是如何构建无线网络,从而从1000个单独的传感器中传输,接收和解码从微传感器群体传输,接收和解码到数据。一个粗略的类比是一个常见的射频标签,必须由单个收发器立即读取,其扭曲是在每个传感器位置的信号现在都会在时间和大小上变化。在这种情况下,脑部计算机界面提出了一个范式:如何通过自主脑植入的微传感器群体以高分辨率捕获神经元信号。在全球实验室中开发脑机界面开发的持续研究集中在许多方案上,在许多方案中,可以感受到在皮质中获得数千点的访问,以将大脑计算转化为有用的电子命令,例如用于预期的演讲。神经技术问题是三个方面:要毫不显着地记录大脑的电信号,将数据无线传输到人体外部接收器,并实时破译大量信号。许多动态环境的分布敏感性的案例的特征是事件的稀疏性,无论是自然还是人造系统,大脑中的神经元就是一个例子。提出的事件驱动的通信策略可以利用大脑作为灵感来有效地传播,准确检索和解释稀疏事件的稀疏事件。拟议的工作集中在一种构建大型无线微传感器射频网络的多合一方法上。外部收发器在向传感器提供无线电源的同时收集数据。每个传感器是一个亚毫米尺寸的硅系统在微芯片上,具有定制电路,设计用于“事件检测”,其中将随时间变化的传感器输入编码为一系列简短的“尖峰”。最近在所谓的动态视觉摄像机中出现了以脑启发的编码稀疏事件数据的方法。尖峰火车数据在芯片上转换为数字形式,并将其传输到一个常见的接收器。 Since only the event-driven spikes are transmitted through the network, the bandwidth of the communication system can be utilized very efficiently enabling a large population of sensors to be incorporated into the network.The team proposals to build a microsensor system and demonstrate low-error rate and efficient asynchronous, encoded wireless transmission in the laboratory using fabricated microchips, and to show extended applicability to thousands of nodes though模拟。事件传感检测和无线通信方法非常适合用于分析的多感觉数据的神经形态计算方法。项目中的第三个关键要素。该团队将展示如何从由多达8000个微传感器组成的假设植入物中解码实际的大脑数据(从实际素数记录中的其他地方合成)。在效率和较短的延迟方面,神经形态计算似乎特别适合基于事件的数据。团队计划使用来自灵长类运动皮层的可用数据来展示如何对数千个神经元的无线信号进行解码以预测计划中的手臂和手动运动。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arto Nurmikko其他文献
Arto Nurmikko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arto Nurmikko', 18)}}的其他基金
Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits
用于连接大脑电路的双向无线光电装置
- 批准号:
1402803 - 财政年份:2014
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
An Optoelectronics Device to Write-In and Read-Out Activity in Brain Circuits
用于写入和读出脑电路活动的光电装置
- 批准号:
1264816 - 财政年份:2013
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Red-Green-Blue Colloidal Quantum Dots for Full Spectrum Microlasers
用于全光谱微型激光器的红-绿-蓝胶体量子点
- 批准号:
1128331 - 财政年份:2011
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
- 批准号:
0937848 - 财政年份:2009
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications
用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料
- 批准号:
0725740 - 财政年份:2007
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Biophotonics: Dynamical Cellular Imaging by Compact Arrays of Blue and Ultraviolet Light Emitting Diodes
生物光子学:通过蓝色和紫外发光二极管紧凑阵列进行动态细胞成像
- 批准号:
0423566 - 财政年份:2004
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Dynamics of Ultrafast Magnetization in Magnetic Thin Films and Heterostructures
磁性薄膜和异质结构中超快磁化的动力学
- 批准号:
0074080 - 财政年份:2000
- 资助金额:
$ 38.36万 - 项目类别:
Continuing Grant
Vertical Cavity Blue and Ultraviolet Light Emitters
垂直腔蓝光和紫外光发射器
- 批准号:
0070887 - 财政年份:2000
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Acquisition of an Ultrafast Laser Spectrometer/Metrology System
购置超快激光光谱仪/计量系统
- 批准号:
9871213 - 财政年份:1998
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Research on Blue and Near Ultraviolet Diode Lasers
蓝光及近紫外二极管激光器的研究
- 批准号:
9726938 - 财政年份:1998
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习的大尺度重磁异常正反演研究
- 批准号:42374174
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于环肽的穴状大环超分子体系构筑及其分子选择键合研究
- 批准号:22371148
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
环境扰动与有限测量下大天线高精度跟踪指向控制技术的研究
- 批准号:12303099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于力学克尔效应的大带宽、低功耗片上集成光学非互易器件研究
- 批准号:62305316
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年肌阵挛性癫痫发作控制与复发的脑网络系统动力稳定性大时间尺度演化机制研究
- 批准号:82301640
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Continuing Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant