CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking

CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络

基本信息

  • 批准号:
    2322369
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Intelligent analytics approaches leveraging machine learning techniques offer new capabilities to analyze, model, predict and optimize traffic for high-throughput distributed computing workflows. These techniques can be greatly enhanced by access to real-world data from the edge (campus networks) and the core (Internet2) as well as Just-In-Time (JIT) machine learning approaches. Such a design allows for run-time deployment of the models at the campus cyberinfrastructure to make real-time network decisions. Network flow data collected from these cyberinfrastructures for analysis quickly scales up in size, making it infeasible to perform analysis of network flows in a realistic and timely manner. There are intrinsic difficulties stemming from data storage, its formatting and types as well as the manner in which traditional analysis is done to study network flow data. Although advances have been made in the past several years in how data could be handled efficiently, the new techniques have not been integrated well into the network operations. Improvements need to be made in the way network flow data is analyzed by exploiting the modern data storage formats and the intrinsic properties of the network flow data as well as by developing efficient data structures and algorithms. Recent advances in networking allow for fine-grained network control policies to be managed by network applications. Although it is possible to improve the overall performance of scientific data transfers end-to-end, problems exist with managing resources and differentiating network services at the experiment/site level. Designing and developing intelligent network analysis by JIT machine learning paradigms strengthened by a scalable network flow analysis framework for an application-aware control of the network in high-throughput computing frameworks is the goal of this project. The project is strengthened by collaborations with Holland Computing Center (HCC) at UNL, Open Science Consortium (OSG), Argonne National Lab (ANL) and Internet2. The techniques and frameworks developed in this project will be made available to the open-source community, thus benefiting other science application use cases in Research and Education (R&E) networks. Enriching the education opportunities for UNL School of Computing students and conducting outreach events for the broader community are important objectives of this project.The project aims to transform the current cyberinfrastructure networking approach by (1) gaining insights in real-time by the development and integration of online-offline approaches to machine learning (unlike traditional offline approaches) that can be deployed in data centers for real-time network traffic analysis and prediction; (2) scalable analysis of network flow data by implementing the developed theoretical models for transforming, indexing and building search techniques to study the network flow data at internet-scale in real-time and (3) application-aware control of data transfers by application-aware software defined networking (SDN) control strategies to provide greater flexibility in network management and service differentiation for scientific data transfers on campus cyberinfrastructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能分析方法利用机器学习技术为分析,建模,预测和优化高通量分布式计算工作流程的流量提供了新的功能。通过从Edge(校园网络)和Core(Internet2)以及Just-Undime(JIT)机器学习方法访问现实世界数据,可以大大增强这些技术。这样的设计允许在校园网络基础结构中运行模型的运行时间,以做出实时网络决策。从这些网络基础设施收集的网络流数据以迅速扩大规模,因此以现实和及时的方式对网络流进行分析是不可行的。数据存储,其格式和类型以及进行传统分析来研究网络流数据的方式存在内在的困难。尽管在过去几年中,在如何有效地处理数据方面已经取得了进步,但新技术并未很好地集成到网络运营中。需要通过利用现代数据存储格式以及网络流数据的内在属性以及开发有效的数据结构和算法来分析网络流数据的方式进行改进。网络的最新进展允许通过网络应用程序管理细粒网络控制策略。尽管有可能提高科学数据传输端到端的总体绩效,但在管理资源和在实验/站点层面上区分网络服务的问题存在问题。通过可扩展的网络流量分析框架来设计和开发通过JIT机器学习范式来设计和开发智能网络分析,以在高通量计算框架中对网络进行应用程序感受的控制是该项目的目标。通过与荷兰计算中心(HCC)合作,开放科学联盟(OSG),Argonne National Lab(ANL)和Internet2的合作,该项目得到了加强。该项目中开发的技术和框架将提供给开源社区,从而使研究和教育(R&E)网络中的其他科学应用程序案例受益。在(1)通过(1)通过(1)通过(1)通过(1)实时获得实时的洞察力来改变当前的网络基础结构网络方法,通过(1)通过开发和集成在线学习方法的机器学习方法(与传统的离线方法)在数据中心分析,并为实体分析而实现,该项目是通过(1)实时获得实时的洞察力,并将其实时地分析; (2)通过实施开发的理论模型来转换,索引和构建搜索技术,以实时研究网络流量数据,以及(3)通过应用程序了解软件定义的网络(SDN)控制策略,以提供更大的灵活性,以对网络管理和服务差异的灵活性,可用于网络流量数据传输,以实现网络流量数据的可扩展分析。法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Byravamurthy Ramam...的其他基金

NeTS: Small: Intelligent Optical Networks using Virtualization and Software-Defined Control
NeTS:小型:使用虚拟化和软件定义控制的智能光网络
  • 批准号:
    1817105
    1817105
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CC*DNI Integration: Innovating Network Cyberinfrastructure through Openflow and Content Centric Networking in Nebraska
CC*DNI 集成:通过内布拉斯加州的开放流和内容中心网络创新网络网络基础设施
  • 批准号:
    1541442
    1541442
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Continuing Grant
    Continuing Grant
FIA-NP: Collaborative Research: The Next-Phase MobilityFirst Project - From Architecture and Protocol Design to Advanced Services and Trial Deployments
FIA-NP:协作研究:下一阶段 MobilityFirst 项目 - 从架构和协议设计到高级服务和试验部署
  • 批准号:
    1345277
    1345277
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Cooperative Agreement
    Cooperative Agreement
FIA: Collaborative Research: MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet
FIA:协作研究:MobilityFirst:面向未来互联网的稳健且值得信赖的以移动为中心的架构
  • 批准号:
    1040765
    1040765
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
Secure Group Communications (SGC) over Wired and Wireless Networks
通过有线和无线网络实现安全群组通信 (SGC)
  • 批准号:
    0311577
    0311577
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Design of Translucent Optical WDM Networks
半透明光WDM网络的设计
  • 批准号:
    0074121
    0074121
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
“靶免治疗一体化”多肽小分子前药的构建及在膀胱癌中的应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超高场磁共振的脑小血管结构与功能一体化高时空分辨率成像方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向通信导航一体化终端的有源电小天线关键技术研究
  • 批准号:
    U22B2016
  • 批准年份:
    2022
  • 资助金额:
    253.00 万元
  • 项目类别:
    联合基金项目
基于超高场磁共振的脑小血管结构与功能一体化高时空分辨率成像方法研究
  • 批准号:
    82271985
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
  • 批准号:
    2346729
    2346729
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CC* Integration-Small: Network-Aware Edge Computing for Real-time Wildfire Detection
CC* Integration-Small:用于实时野火检测的网络感知边缘计算
  • 批准号:
    2346755
    2346755
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CC* Integration-Small: M2- NET: An Integrated Access and Backhaul Millimeter-wave Wireless Network for Campus Connectivity and Research
CC* Integration-Small:M2-NET:用于校园连接和研究的集成接入和回程毫米波无线网络
  • 批准号:
    2346621
    2346621
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CC* Integration-Small: Integrating Application Agnostic Learning with FABRIC for Enabling Realistic High-Fidelity Traffic Generation and Modeling
CC* Integration-Small:将应用程序无关学习与 FABRIC 集成,以实现现实的高保真流量生成和建模
  • 批准号:
    2419070
    2419070
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant