CAREER: Torsional Quantum Optomechanics

职业:扭转量子光力学

基本信息

  • 批准号:
    2239735
  • 负责人:
  • 金额:
    $ 50.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

High-Q nanomechanical resonators are the building blocks of quantum optomechanics experiments, enabling the use of light to probe and manipulate mechanical motion at the quantum limit. This project will explore a new landscape in quantum optomechanics opened by the recent discovery of ultra-high-Q torsion nanoresonators, addressing both fundamental and applied research opportunities. A key goal is to start a dialogue between Quantum Imaging and Quantum Optomechanics fields which share common interests but have developed in parallel as subfields of Quantum Photonics and Quantum Optics. Another goal is to extend nanomechanical sensing to gravimetry, giving access to broad applications from inertial navigation to subterranean imaging. In addition to research, the principal investigator will develop a laboratory course for the Quantum Information Science and Engineering master’s program at University of Arizona. Spanning techniques from single-photon detection to dilution refrigeration, the course will answer a growing demand for hands-on experience in the quantum workforce.The research program has three thrusts, each based on reflecting a laser field from a strained silicon nitride nanoribbon possessing high Q torsion modes. First, a new field of imaging-based quantum optomechanics will be explored, with traditional interferometric measurement replaced by laser deflectometry (the optical lever method). A key goal is to observe radiation pressure shot noise in torque and study its influence on the quantum state of the reflected light field. Second, a compact pendulum gravimeter will be developed based on frequency tracking of a mass-loaded nanoribbon. The goal is a self-calibrated gravimeter with nano-g sensitivity in a chip-scale, arrayable format. Third, using advanced engineering techniques, nanoribbons with torsional quality factors exceeding 1 billion will be developed. Combined with quantum-limited deflectometry, an attempt will be made to ground state cool a nanomechanical oscillator from room temperature, of interest for both quantum technology and as a teaching tool.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高Q值纳米机械谐振器是量子光力学实验的基石,能够利用光来探测和操纵量子极限下的机械运动。该项目将探索最近发现的超高量子光力学的新领域。 Q 扭转纳米谐振器,解决基础和应用研究机会,一个关键目标是启动量子成像和量子光力学领域之间的对话,这两个领域有着共同的兴趣,但作为子领域并行发展。量子光子学和量子光学的另一个目标是将纳米机械传感扩展到重力测量,从而获得从惯性导航到地下成像的广泛应用。除了研究之外,首席研究员还将为量子信息科学与工程硕士课程开发一门实验室课程。该课程涵盖从单光子探测到稀释制冷等技术,将满足量子工作者对实践经验日益增长的需求。该研究项目包括三个项目首先,将探索基于成像的量子光力学的新领域,用激光偏转测量(光杠杆方法)取代传统的干涉测量。一个关键目标是观察扭矩中的辐射压力散粒噪声并研究其对反射光场量子态的影响。其次,将开发基于质量负载频率跟踪的紧凑摆重力计。纳米带。第三,采用先进的工程技术,将开发出扭转品质因数超过 10 亿的纳米带,并与量子极限偏转测量相结合。将尝试将纳米机械振荡器从室温冷却到基态,这对量子技术和教学工具都很感兴趣。该奖项是 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dalziel Wilson其他文献

Dalziel Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dalziel Wilson', 18)}}的其他基金

PM: Optomechanical Dark Matter Detectors
PM:光机械暗物质探测器
  • 批准号:
    2209473
  • 财政年份:
    2022
  • 资助金额:
    $ 50.77万
  • 项目类别:
    Standard Grant
Quantum-Enhanced Optomechanical Accelerometers
量子增强光机械加速度计
  • 批准号:
    1945832
  • 财政年份:
    2020
  • 资助金额:
    $ 50.77万
  • 项目类别:
    Standard Grant

相似国自然基金

静电驱动扭转微镜的吸合失稳分析、非线性控制及扫描应用
  • 批准号:
    62373228
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于扭转双层石墨烯的手性诱导自旋选择机制研究
  • 批准号:
    52303291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑扭转-滑移耦合效应的梁桥横向倾覆机理与抗倾覆对策研究
  • 批准号:
    52378185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
RNA-DNA杂合链在扭转下的结构动态
  • 批准号:
    12304254
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
悬索桥大直径主缆扭转和弯曲刚度解析模型及找形理论
  • 批准号:
    52378138
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Novel lateral torsional buckling solutions for new structures and strengthening applications
适用于新结构和加固应用的新型横向扭转屈曲解决方案
  • 批准号:
    RGPIN-2022-03985
  • 财政年份:
    2022
  • 资助金额:
    $ 50.77万
  • 项目类别:
    Discovery Grants Program - Individual
Influence of Joist Stiffness Response on Lateral-Torsional Buckling of Steel Cantilevered Girders
托梁刚度响应对钢悬臂梁横向扭转屈曲的影响
  • 批准号:
    573030-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigation of mechanisms to control the longitudinal and torsional mode vibration response of an ultrasonic transducer
研究控制超声换能器纵向和扭转模式振动响应的机制
  • 批准号:
    2744576
  • 财政年份:
    2022
  • 资助金额:
    $ 50.77万
  • 项目类别:
    Studentship
Thin film superconductors for torsional optomechanics studies
用于扭转光力学研究的薄膜超导体
  • 批准号:
    573055-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel lateral torsional buckling solutions for new structures and strengthening applications
适用于新结构和加固应用的新型横向扭转屈曲解决方案
  • 批准号:
    RGPIN-2022-03985
  • 财政年份:
    2022
  • 资助金额:
    $ 50.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了