Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
基本信息
- 批准号:2320875
- 负责人:
- 金额:$ 29.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Insects can fly up to 35 mph, execute dizzying turns and maneuvers, and migrate over ten thousand miles amid incredibly large flow disturbances. These feats have driven the design of bio-inspired robotic vehicles, with potential applications in disaster recovery, efficient and environmentally friendly air package delivery, and improved safety in commercial flight. To realize these applications, robotic flyers must become more maneuverable and robust to disturbances. The research has two goals or questions to build towards these next-generation aerial vehicles: (i) Current robotic wing designs borrow inspiration from natural flyers, but the aerodynamic utility of features such as veins, reinforced leading edges, and asymmetric wing shapes remain unknown. If these properties were optimized for aerodynamic performance, what structurally heterogeneous features would arise and how similar or different are these from those found in insects? (ii) Next-generation aerial vehicles require improved sensing of flow disturbances. Can the passive wing deformations from flight be leveraged to estimate the surrounding flow behavior, and could such an estimation framework yield hypotheses about whether insects possess similar estimation paradigms? This project will use adjoint-based optimization to determine optimal wing heterogeneity in canonical flapping flyers. This optimization will use high-fidelity, fully coupled fluid-structure interaction simulations. Where possible, mechanisms that clarify how the optimized properties yield beneficial changes to key flow structures will be drawn. Optimal results will be compared to properties of biological flyers to assess whether they benefit aerodynamic performance (without assuming so beforehand). A state estimation paradigm that leverages neural-network architectures will be developed to assess whether accurate flow state information can be obtained from wing deformations. The intellectual merit of this work lies in the identification of aerodynamically optimal wing properties and the associated fluid-structure mechanisms that explain how these properties benefit aerodynamic performance, as well as the development of plausible state estimation paradigms from passive wing deformations. The technical broader impacts are the development of more maneuverable and disturbance-robust micro-air vehicles, as well as new hypotheses about the aerodynamics of insect flight. Educationally, this program will be integrated into an undergraduate research internship with students from under-served populations via the McNair Scholars Program, as well as a collaboration with the UIUC Chicago Science & Engineering Program. In this latter collaboration, students from Minorities in Aerospace, an organization co-founded by the PI, will teach K-12 students from under-represented groups and their families the coding, control ideas, and implementation of a basic drone flight sequence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
昆虫最多可以飞到35英里 /小时的时间,在大大的流动障碍中迁移令人眼花the乱的转弯和动作,并迁移了一万英里。这些壮举驱动了以生物风格的机器人车的设计,并在灾难恢复,高效且环保的空气套餐交付方面进行了潜在的应用,并提高了商业飞行的安全性。为了实现这些应用,机器人传单必须变得更加动摇和强大的干扰。这项研究有两个目标或问题,可以朝着这些下一代航空车发展:(i)当前的机器人翼设计从天然传单中借用灵感,但是静脉,增强的领先边缘和不对称的机翼形状等特征的空气动力学效用仍然未知。如果这些特性是针对空气动力学性能进行了优化的,那么将出现哪些结构异质特征,以及这些特征与昆虫中发现的特征有多相似或不同? (ii)下一代飞机需要改善流动干扰的感应。可以利用飞行中的被动机翼变形以估算周围的流动行为,并且这样的估计框架是否可以假设昆虫是否具有相似的估计范例?该项目将使用基于伴随的优化来确定规范拍打传单中的最佳机翼异质性。该优化将使用高保真,完全耦合的流体结构互动模拟。在可能的情况下,将阐明优化特性如何对关键流结构产生有益的变化的机制。将最佳结果与生物传单的特性进行比较,以评估它们是否有益于空气动力学性能(而不是事先假设)。将开发出一种利用神经网络架构的状态估计范式来评估是否可以从机翼变形中获得准确的流量状态信息。这项工作的智力优点在于鉴定空气动力学最佳的机翼特性以及相关的流体结构机制,这些机制解释了这些特性如何使空气动力学性能以及从无源机翼变形的合理状态估计范式发展。技术更广泛的影响是开发更多可操纵和动荡的微型空气车,以及关于昆虫飞行空气动力学的新假设。在教育上,该计划将通过McNair Scholars计划与服务不足人群的学生一起纳入本科研究实习,并与UIUC芝加哥科学与工程计划合作。 In this latter collaboration, students from Minorities in Aerospace, an organization co-founded by the PI, will teach K-12 students from under-represented groups and their families the coding, control ideas, and implementation of a basic drone flight sequence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andres Goza其他文献
Thermodynamic modeling of bulk ternary alloy crystal growth: Comparison of experiments and theory for GaInSb alloys
大块三元合金晶体生长的热力学建模:GaInSb 合金的实验与理论比较
- DOI:
10.1016/j.jcrysgro.2011.09.056 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Andres Goza;Stephanie E. Tritchler;D. Bliss;B. Houchens - 通讯作者:
B. Houchens
Numerical Methods for Fluid-Structure Interaction, and their Application to Flag Flapping
- DOI:
10.7907/z95t3hpb - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Andres Goza - 通讯作者:
Andres Goza
Design and Analysis of Phononic Material for Passive Flow Control
用于无源流动控制的声子材料的设计与分析
- DOI:
10.2514/6.2022-3330 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
S. Park;G. Hristov;S. Balasubramanian;Andres Goza;Phillip J. Ansell;K. Matlack - 通讯作者:
K. Matlack
Global modes and nonlinear analysis of inverted-flag flapping
倒旗飘动的全局模态和非线性分析
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Andres Goza;T. Colonius;J. Sader - 通讯作者:
J. Sader
Andres Goza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andres Goza', 18)}}的其他基金
Bioinspired, Adaptive, and Self-Deploying Flaps for Distributed Aerodynamic Flow Control
用于分布式气动流量控制的仿生、自适应和自展开襟翼
- 批准号:
2029028 - 财政年份:2020
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
相似国自然基金
控制域非凸的带跳完全耦合正倒向随机最优控制问题研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
复合材料结构热压罐固化成型工艺过程的多物理场流固完全耦合求解方法研究
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
GaN基高效太阳能完全分解水制氢体系构建及光热-催化耦合机理研究
- 批准号:51906197
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
形状记忆合金內滞回效应机理分析与本构建模研究
- 批准号:11802241
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于电-热-力-陷阱完全耦合建模的AlGaN/GaN HEMT电学性能退化研究
- 批准号:61704013
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
- 批准号:
2239207 - 财政年份:2023
- 资助金额:
$ 29.95万 - 项目类别:
Continuing Grant
Fully Coupled Modeling of Dynamic Rupture, Wedge Plasticity, and Tsunami for Great Earthquakes in the Japan Trench
日本海沟大地震的动态破裂、楔塑性和海啸的全耦合建模
- 批准号:
2244703 - 财政年份:2023
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Research on the creation and evaluation of high-performance scalable fully coupled Ising machine LSI
高性能可扩展全耦合伊辛机LSI创建与评估研究
- 批准号:
22H01559 - 财政年份:2022
- 资助金额:
$ 29.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAR-PF: Dynamic flow channeling through complex fracture networks under multi-frequency oscillatory flow conditions: A fully-coupled hydromechanical approach
EAR-PF:多频振荡流条件下通过复杂裂缝网络的动态流道:全耦合流体力学方法
- 批准号:
2204543 - 财政年份:2022
- 资助金额:
$ 29.95万 - 项目类别:
Fellowship Award
Collaborative Research: Noncovalently Bound Molecular Trimers: High-dimensional and Fully Coupled Quantum Calculations of their Vibrational Levels
合作研究:非共价键合分子三聚体:其振动水平的高维和完全耦合量子计算
- 批准号:
2054604 - 财政年份:2021
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant