CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
基本信息
- 批准号:2238096
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum information and quantum computing have long established revolutionary promises, such as exponential speedup of difficult to near-impossible computations. They can be directly applied to attack some of society’s biggest challenges through modeling atoms and molecules, such as nitrogen fixation for fertilizer production, room-temperature superconductivity, and pharmaceuticals. It has been recognized that millions to billions of raw qubits are required to realize practical, universal, and fault-tolerant quantum computing. Yet there exists no established paradigm for building such highly scalable quantum systems. Therefore, achieving scalability and maintaining high coherence at a large scale are two of the central challenges to quantum information processing. Many existing quantum systems, like superconducting qubits and trapped ion qubits, are scaled up qubit by qubit due to the lack of multiplexing: one has to fabricate N more physical structures to add N more qubits. Thus, to further increase the number of qubits is exponentially challenging because of the power of the compound yield rate. Quantum optics provides a promising alternative thanks to its capability of photonic multiplexing in spectral, temporal, and spatial domains, meaning that a large number of quantum modes in frequency, time, or spatial domain can be generated with just a few devices. In order to reach the next step, quantum-integrated technology must become a reality, where a massive number of photonic elements are integrated to process the large number of quantum modes. This proposal aims to develop methods for large-scale multipartite entanglement generation, where all critical elements, including entanglement generation and detection, will be integrated on the same chip. The proposed work can open up new avenues in the fields of quantum computing, networking, and sensing.The proposed effort aims to develop methods to generate large-scale multipartite entanglement states with integrated photonic circuits. The approach is based on high-Q optical microresonators, where hundreds of longitude optical modes with their frequencies separated by free-spectral-range will serve as frequency multiplexed quantum modes to encode quantum information through the continuous-variable approach. Unconditional entanglement among the quantum modes will be created by the Kerr parametric process in microresonators and quantum interference among different microresonators. To pursue “quantum experiment on a chip,” balanced photodiodes with high quantum efficiency will be heterogeneously integrated with the entanglement generation chip, which will minimize excess loss and phase fluctuation between quantum state generation and detection to preserve the quality of entanglement. This project will not only create a quantum leap in the scale and quality of multipartite entanglement generated with integrated photonic circuits, but more importantly, it will be a significant step forward in the miniaturization and applicability of continuous-variable quantum optics and push the state-of-art for applications in quantum computing, communication, and sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息和量子计算早已确立了革命性的前景,例如困难到几乎不可能的计算的指数级加速,它们可以通过原子和分子建模直接应用于解决一些社会面临的最大挑战,例如肥料生产的固氮、房间。人们已经认识到,需要数百万到数十亿的原始量子位来实现实用、通用和容错的量子计算,但目前还没有建立如此高度可扩展的范例。因此,大规模实现可扩展性和保持高相干性是量子信息处理的两个主要挑战,许多现有的量子系统(如超导量子位和俘获离子量子位)由于缺乏量子位而被逐个扩展。多路复用:必须制造更多的物理结构才能添加更多的量子位,因此,由于复合产率的强大,进一步增加量子位的数量是呈指数级的挑战。量子光学因其在光谱、时间和空间域中的光子复用能力而提供了一种有前途的替代方案,这意味着只需少量设备就可以在频率、时间或空间域中生成大量量子模式。为了达到下一步,量子集成技术必须成为现实,其中集成大量光子元件来处理大量量子模式。该提案旨在开发大规模多部分纠缠生成的方法,其中所有关键元件。 , 包括纠缠生成和检测将集成在同一芯片上,这项工作可以在量子计算、网络和传感领域开辟新的途径。这项工作旨在开发利用集成技术生成大规模多部分纠缠态的方法。该方法基于高 Q 光学微谐振器,其中数百个频率由自由光谱范围分隔的经度光学模式将用作频率复用量子模式,通过连续变量方法对量子信息进行编码。微谐振器中的克尔参量过程和不同微谐振器之间的量子干涉将产生量子模式之间的无条件纠缠。为了实现“芯片上的量子实验”,具有高量子效率的平衡光电二极管将与纠缠发生芯片异构集成。将最大限度地减少量子态生成和检测之间的过量损耗和相位波动,以保持纠缠的质量。该项目不仅将在集成光子生成的多部分纠缠的规模和质量上实现巨大飞跃。电路,但更重要的是,这将是连续可变量子光学的小型化和适用性方面向前迈出的重要一步,并推动量子计算、通信和传感应用的最先进水平。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits
利用氮化硅集成光子电路生成挤压量子微梳
- DOI:10.1364/optica.498670
- 发表时间:2023-08
- 期刊:
- 影响因子:10.4
- 作者:Jahanbozorgi, Mandana;Yang, Zijiao;Sun, Shuman;Chen, Haoran;Liu, Ruxuan;Wang, Beichen;Yi, Xu
- 通讯作者:Yi, Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xu Yi其他文献
Evaluation of extra-virgin olive oil adulteration using FTIR spectroscopy combined with multivariate algorithms
使用 FTIR 光谱结合多元算法评估特级初榨橄榄油掺假
- DOI:
10.3920/qas2018.1330 - 发表时间:
2018-09-21 - 期刊:
- 影响因子:4
- 作者:
Xu Yi;M. M. Hassan;F. Kutsanedzie;Huanhuan Li;Quansheng Chen - 通讯作者:
Quansheng Chen
A Novel Detection of Enterococcus faecalis Using Multiple Cross Displacement Amplification Linked with Gold Nanoparticle Lateral Flow Biosensor
使用与金纳米粒子横向流动生物传感器连接的多重交叉位移放大对粪肠球菌的新检测
- DOI:
10.2147/idr.s235325 - 发表时间:
2019-12-04 - 期刊:
- 影响因子:3.9
- 作者:
Xu Chen;Kai Ma;Xu Yi;Ziyu Xiao;Lijuan Xiong;Yu Wang;Shijun Li - 通讯作者:
Shijun Li
Plutonium in the western North Pacific: Transport along the Kuroshio and implication for the impact of Fukushima Daiichi Nuclear Power Plant accident
北太平洋西部的钚:沿黑潮的运输以及对福岛第一核电站事故影响的影响
- DOI:
10.1016/j.chemgeo.2018.12.006 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Wu Junwen;Dai Minhan;Xu Yi;Zheng Jian - 通讯作者:
Zheng Jian
Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy.
基于网络药理学和转录组学策略探讨石韦绿原酸对2型糖尿病的降血糖机制。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.4
- 作者:
Hanjiao He;Qing Wei;Jiao Chang;Xu Yi;Xiang Yu;Guoyong Luo;Xinfeng Li;Wude Yang;Yi Long - 通讯作者:
Yi Long
Energy and Environmental Challenges in China
中国的能源和环境挑战
- DOI:
10.1057/9780230355361_6 - 发表时间:
2012 - 期刊:
- 影响因子:4.8
- 作者:
Xu Yi - 通讯作者:
Xu Yi
Xu Yi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新一代免核酸扩增的单分子定量生物检测平台
- 批准号:32150019
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:国际(地区)合作与交流项目
基于下一代测序数据的高效精准体细胞变异检测算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用新一代靶向定量SWATH和PRM质谱技术筛查早期肝细胞癌蛋白生物标志物
- 批准号:21904107
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
COLD-PR-PCR结合两核苷酸合成测序(SDBA)研究低丰度基因突变
- 批准号:61801071
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
针对新一代视频编码标准HEVC的视频重压缩取证技术研究
- 批准号:61702034
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Preclinical Validation of Personalized Molecular Assays for Measurable Residual Disease Monitoring in Pediatric AML
用于儿科 AML 可测量残留疾病监测的个性化分子检测的临床前验证
- 批准号:
10643568 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
2023 RNA Editing Gordon Research Conference and Gordon Research Seminar
2023年RNA编辑戈登研究大会暨戈登研究研讨会
- 批准号:
10683612 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Development of a Next-generation Rapid Phenotypic Assay for Drug-Resistant M. tuberculosis
下一代耐药结核分枝杆菌快速表型检测方法的开发
- 批准号:
10734083 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Illuminating Glial Dysfunction in Alzheimer’s Disease with Optical Coherence Tomography
利用光学相干断层扫描揭示阿尔茨海默病中的神经胶质功能障碍
- 批准号:
10571184 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别: