CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime

职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件

基本信息

  • 批准号:
    2237663
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Wide and ultrawide bandgap III-nitride semiconductors have the foundational capability to meet the power and frequency requirements of near-terahertz communication systems with bandwidths exceeding 100 gigahertz. III-nitrides are also well positioned to be used in extreme environments, from the cryogenic limit to high temperatures. However, the demonstrated performance of III-nitride devices today is still below theoretical expectations, and the promise of III-nitrides for near-terahertz applications remains unfulfilled. Still experimental advances in isolation of theoretical advances are unlikely to change this existing landscape. To tackle this challenge, in this research, we will create a multi-scale and hierarchical computational framework that will provide a high fidelity insight into the underlying physics of III-nitride devices at different length-, time-, and temperature-scales. These fundamental insights are crucial for identifying material- and device-level advances that will push the bounds of III-nitrides’ based wireless technologies, be it for commercial wireless communication or scientific investigations in extreme environments. This research will have a far reaching impact in areas like healthcare, energy, transportation, space programs, and social and educational advancements. The models developed here will be fully open-source and available to researchers world-wide, amplifying the scale and impact of this research. We will inaugurate an afterschool semiconductors-focused summer camp for middle school students and collaborate with the Inclusivity, Diversity, Equity and Access Institute at the University to recruit low-income and minority students in the department and in our research lab. Web-based learning library on semiconductor physics will be developed to encourage students to think creatively about the possibilities of semiconductors in next-generation electronic systems. The success of this research, outreach and educational plan holds promise to result in decades of productive fundamental knowledge, contribute to translation into important near-terahertz technologies, and motivate the participation and retention of a diverse community of electrical engineers, materials scientists, and physicists.Modeling and simulation tools are the cornerstones of the physics-based and application-driven device and circuit design. Because III-nitride devices are intended for use in high-field and high-frequency applications, current models that neglect Maxwell’s full-wave effects and full-band physics fail at guiding experiments for technology optimization and cannot fully explore the materials-to-circuit design space, which is highly desirable for meeting target performance metrics. Thus, it is safe to say that a fundamental rethinking of computational methodologies for III-nitride devices will be a game-changer for a myriad of near-terahertz applications that can address some of the biggest challenges of current and future times. In this research, we will create a multi-scale computational framework that combines first-principles calculations through numerical transport simulations to a compact circuit model. This framework will identify new theoretical means to interrogate and control the high-frequency and off-equilibrium physics of the near-terahertz III-nitride devices. Salient features of this computational framework include full electronic bandstructure, hot-electron effects, self-heating, quantum-mechanical scattering, charge trapping, low-temperature physics, and full-wave electromagnetics. Because the numerical framework will be complemented with a SPICE-compatible and experimentally validated compact model, the proposed research will enable large-scale circuit simulations and systems design. The outcomes of this research will benefit many stake holders, from material scientists to circuit designers, and enable cross-disciplinary interactions that will set the global stage for multi-generational research in wide and ultrawide bandgap semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宽禁带和超宽带隙 III 族氮化物半导体具有满足带宽超过 100 GHz 的近太赫兹通信系统的功率和频率要求的基础能力,也非常适合在从低温极限到极端环境中使用。然而,目前 III 族氮化物器件所展示的性能仍低于理论预期,并且 III 族氮化物在近太赫兹应用中的前景仍未实现。理论进步不太可能改变这一现有格局,为了应对这一挑战,在本研究中,我们将创建一个多尺度和分层的计算框架,该框架将为不同长度的 III 族氮化物器件的基础物理提供高保真度的洞察。这些基本见解对于确定材料和器件级别的进步至关重要,这些进步将推动基于 III 氮化物的无线技术的发展,无论是商业无线通信还是极端环境中的科学研究。这项研究将在以下领域产生深远的影响。这里开发的模型将完全开源,可供世界各地的研究人员使用,扩大这项研究的规模和影响力。中学生夏令营,并与大学的包容性、多样性、公平和访问研究所合作,在该系和我们的研究实验室招募低收入和少数族裔学生,以开发基于网络的半导体物理学习图书馆。鼓励学生创造性思考这项研究、推广和教育计划的成功有望带来数十年的富有成效的基础知识,有助于转化为重要的近太赫兹技术,并激励人们的参与和保留。由电气工程师、材料科学家和物理学家组成的多元化社区。建模和仿真工具是基于物理和应用驱动的器件和电路设计的基石,因为 III 族氮化物器件旨在用于高场和高磁场。频率应用,当前模型忽视麦克斯韦的全波效应和全带物理无法指导技术优化的实验,并且无法充分探索材料到电路的设计空间,而这对于满足目标性能指标是非常理想的。对 III 族氮化物器件计算方法的根本性重新思考将成为无数近太赫兹应用的游戏规则改变者,可以解决当前和未来时代的一些最大挑战。在这项研究中,我们将创建一个多尺度计算。框架结合了该框架将通过数值输运模拟对紧凑电路模型进行第一性原理计算,以探究和控制近太赫兹 III 氮化物器件的高频和非平衡物理现象。包括全电子能带结构、热电子效应、自加热、量子力学散射、电荷捕获、低温物理和全波电磁学,因为数值框架将得到补充。借助 SPICE 兼容且经过实验验证的紧凑模型,拟议的研究将实现大规模电路仿真和系统设计,这项研究的成果将使从材料科学家到电路设计师的许多利益相关者受益,并实现跨学科互动。将为宽禁带和超宽带隙半导体的多代研究奠定全球舞台。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaloo Rakheja其他文献

Shaloo Rakheja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaloo Rakheja', 18)}}的其他基金

IUCRC Phase I: University of Illinois at Urbana-Champaign (UIUC): Center for Advanced Semiconductor Chips with Accelerated Performance (ASAP)
IUCRC 第一阶段:伊利诺伊大学厄巴纳-香槟分校 (UIUC):具有加速性能的先进半导体芯片中心 (ASAP)
  • 批准号:
    2231625
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
2022 Device Research Conference
2022年器件研究会议
  • 批准号:
    2227544
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
2022 Device Research Conference
2022年器件研究会议
  • 批准号:
    2227544
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
79th Device Research Conference. To Be Held Virtually June 20-23, 2021.
第 79 届设备研究会议。
  • 批准号:
    2133323
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant University of Illinois: Center for Aggressive Scaling by Advanced Processes for Electronics and Photonics (ASAP)
IUCRC 规划拨款伊利诺伊大学:电子和光子学先进工艺积极扩展中心 (ASAP)
  • 批准号:
    2052749
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: EAGER: Toward Energy-Efficient Heterogeneous Computing Integrating Polymorphic Magnetic and CMOS Devices
SHF:EAGER:迈向集成多态磁性和 CMOS 器件的节能异构计算
  • 批准号:
    1930620
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: EAGER: Toward Energy-Efficient Heterogeneous Computing Integrating Polymorphic Magnetic and CMOS Devices
SHF:EAGER:迈向集成多态磁性和 CMOS 器件的节能异构计算
  • 批准号:
    2021230
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRII: SHF: WINGS -- Wireless Interconnects for Next-Generation Systems
CRII:SHF:WINGS——下一代系统的无线互连
  • 批准号:
    1565656
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

两类偏微分方程大规模离散系统的特征驱动的多水平算法及其新型解法器研究
  • 批准号:
    12371373
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于粒球计算的多粒度大规模聚类算法研究
  • 批准号:
    62306055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于模块化多电平换流器技术的大规模锂电储能系统能量管控理论与方法研究
  • 批准号:
    62303017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模多模态预训练的关键问题研究
  • 批准号:
    62376274
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向大规模多模态图数据的高内聚社区挖掘关键技术研究
  • 批准号:
    62372013
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Multi-scale Manufacturing of Porous Carbon Nanostructures
职业:多孔碳纳米结构的多规模制造
  • 批准号:
    2338386
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Additive Manufacturing with Acoustically Assembled Multi-Scale Composite Materials
职业:使用声学组装的多尺度复合材料进行增材制造
  • 批准号:
    2240170
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了