CAREER: Hierarchical Robust Stochastic Control for a Flexible and Sustainable Power Supply
职业:用于灵活和可持续电源的分层鲁棒随机控制
基本信息
- 批准号:2236843
- 负责人:
- 金额:$ 51.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to address challenges associated with power system flexibility which is a key requirement for transitioning to a carbon free and resilient electric grid. A controllable reconfigurable power system can potentially reduce the impact of natural disasters and inherent randomness of widely used renewable energy sources such as solar and wind. This is important because volatility of renewable energies and increase occurrence of extreme weather makes the system significantly more sensitive to changes and therefore, harder to manage. The project will bring transformative change by providing a general framework to model a multi-layer power system that takes into account intermittent renewable energy sources and a robust scheduling scheme that will help system operators to take the appropriate action for delivering power to customers. This will be achieved first by introducing a new coordinated approach for transitioning from the existing grid to a more agile one, and second by developing a model based supervisory algorithm. The intellectual merits of the project include a fundamental framework for the energy management of a modernized electric grid that is agile, reconfigurable, clean and resilient. The broader impacts of the project include an integrated effort attracting the next generation of engineers to the field of power and energy and increase awareness to the local underserved communities on the impact and utilization of renewable energies. During the proposed research, a series of novel control strategies will be developed that not only provide operational flexibility to the grid but also allow management and stabilization of the power supply. Microgrids are the building blocks of this framework. The multi-level control algorithm is based on a multi-layer stochastic model that incorporates network constraints. The proposed control strategies have the following key attributes: i) it is hierarchical in a sense that microgrids will connect and disconnect from a network of microgrids as needed; ii) it is robust since it will prioritize stability over optimality and, iii) it is stochastic to address the intermittent character of renewable energies. The network constraints will be addressed by using linear matrix inequalities based design. The results will be validated in real-time hardware in the loop.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF 职业项目旨在解决与电力系统灵活性相关的挑战,这是向无碳和弹性电网过渡的关键要求。可控可重构电力系统可以潜在地减少自然灾害的影响以及广泛使用的可再生能源(例如太阳能和风能)固有的随机性。这一点很重要,因为可再生能源的波动性和极端天气发生率的增加使系统对变化更加敏感,因此更难以管理。该项目将通过提供一个通用框架来模拟多层电力系统,该框架考虑了间歇性可再生能源和强大的调度方案,从而帮助系统运营商采取适当的行动向客户提供电力,从而带来变革。这将首先通过引入一种新的协调方法从现有网格过渡到更敏捷的网格来实现,其次通过开发基于模型的监督算法来实现。该项目的智力优势包括一个灵活、可重构、清洁和有弹性的现代化电网能源管理的基本框架。该项目更广泛的影响包括综合努力吸引下一代工程师进入电力和能源领域,并提高当地服务不足的社区对可再生能源的影响和利用的认识。在拟议的研究过程中,将开发一系列新颖的控制策略,不仅为电网提供操作灵活性,而且还允许管理和稳定电源。微电网是该框架的构建模块。多级控制算法基于包含网络约束的多层随机模型。所提出的控制策略具有以下关键属性:i)从某种意义上说,它是分层的,微电网将根据需要与微电网网络连接和断开; ii) 它是稳健的,因为它将稳定性优先于最优性,并且 iii) 它是随机的,可以解决可再生能源的间歇性特征。网络约束将通过使用基于线性矩阵不等式的设计来解决。 结果将在实时硬件循环中进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Khanbaghi其他文献
Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
使用时间序列模型预测未来 24 小时电力负荷
- DOI:
10.1002/aoc.5765 - 发表时间:
2020-05-18 - 期刊:
- 影响因子:3.9
- 作者:
Ramin Vafadary;Maryam Khanbaghi - 通讯作者:
Maryam Khanbaghi
Maryam Khanbaghi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向复杂场景的非线性多智能体系统一致性分层控制与优化
- 批准号:62303393
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自分层结构的吸波涂层设计及吸波-耐腐蚀性能调控机制
- 批准号:52372103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新泵控主驱/横拉杆辅控式多轴电液转向的精准轨迹跟踪机理与分层控制
- 批准号:52375046
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
基于分布式视觉感知的矿物浮选过程运行状态分层评价方法
- 批准号:62303404
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二步分层李群上的Hardy不等式及相关问题研究
- 批准号:12301145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
- 批准号:
RGPIN-2016-03942 - 财政年份:2021
- 资助金额:
$ 51.7万 - 项目类别:
Discovery Grants Program - Individual
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
- 批准号:
RGPIN-2016-03942 - 财政年份:2021
- 资助金额:
$ 51.7万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2031899 - 财政年份:2020
- 资助金额:
$ 51.7万 - 项目类别:
Continuing Grant
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
- 批准号:
RGPIN-2016-03942 - 财政年份:2020
- 资助金额:
$ 51.7万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2031985 - 财政年份:2020
- 资助金额:
$ 51.7万 - 项目类别:
Continuing Grant