Label-free Detection of Opioids in Liquid Using Zinc Oxide Nanophotonic Sensor
使用氧化锌纳米光子传感器无标记检测液体中的阿片类药物
基本信息
- 批准号:2318814
- 负责人:
- 金额:$ 39.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Illicit drug abuse has become another major national health crisis since the Covid-19pandemic started, due to long period of quarantine at home with significantly reduced socialinteractions. In 2022, U.S. drug overdose deaths hit the highest level in history: nearly 110,000people died from drug overdose according to US Centers for Disease Control and Prevention. Thetop overdose drugs are opioids, cocaine, psychostimulants, and methadone. Mixing multiple drugscan also cause drug-drug interactions which may increase the risk of death. The current drugdetection apparatuses typically require time-consuming, laborious sample preparation procedureand trained staff. These detection methods are not suitable for monitoring and profiling the currentdrug overdose crisis en masse. This project aims to develop a high throughput, label-free andportable sensor that can quantitatively detect multiple drugs (opioids, cocaine, psychostimulants,and methadone) in a liquid sample via a single test. The samples can be collected in the diverseforms of biofluids such as saliva, urine, sweat and blood. Successful development of this automatic,accurate, point-of-care platform will greatly simplify and accelerate the drug screen process.The main module of the sensing platform consists of a silver (Ag) or gold (Au) nanoparticledecorated Zinc Oxide nanorod coated silica nanofiber matrix (Ag/AuNP-ZnONR-SNFnanosensor). Machine learning algorithm will be incorporated to achieve the automatic,quantitative analysis of multiplex detection of the drugs without trained expertise. The objectiveof this project will be achieved by accomplishing the following three research tasks: (1)Development and characterization of the nanosensor material to experimentally demonstrate thefeasibility of surfaced enhanced plasmonic sensing of drugs using the device. The device isfabricated by electrospinning of the silica nanofiber as the supporting matrix, hydrothermal growthof the ZnO nanorod coated on the silica nanofiber, and Ag and Au nanoparticles synthesized byUV irradiation or seed mediated growth method, respectively, on the surface of the ZnONR-SNFmatrix. (2) Optimization of the sensing performance, including the sensitivity, limit of detection(LoD), repeatability and stability of the sensor by tuning the geometries, dimensions, and structureof the nanomaterials-based sensing module with respect to different biofluidic samples. (3)Development of machine learning (ML) algorithms using prior-embedded deep neural networkmodels trained by many data samples obtained using our sensor to identify and quantify multipledrugs from different sample sources. The successful implementation of the algorithm will allowfor an accurate, automatic, quick, and multiplex detection of the drugs. This project will providenew methodologies and data to address the challenges in understanding and monitoring the currentdrug overdose crisis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于长时间在家隔离,社交互动显着减少,非法药物滥用已成为自 Covid-19 大流行开始以来的另一场重大国家健康危机。 2022年,美国药物过量死亡人数创下历史最高水平:根据美国疾病控制与预防中心的数据,近11万人因药物过量死亡。最常见的过量药物是阿片类药物、可卡因、精神兴奋剂和美沙酮。混合多种药物还会导致药物间相互作用,从而可能增加死亡风险。目前的药物检测设备通常需要耗时、费力的样品制备过程和训练有素的工作人员。这些检测方法不适合监测和分析当前的药物过量危机。该项目旨在开发一种高通量、无标记和便携式传感器,可以通过单次测试定量检测液体样品中的多种药物(阿片类药物、可卡因、精神兴奋剂和美沙酮)。可以以多种形式的生物体液采集样本,例如唾液、尿液、汗液和血液。这种自动、准确、即时护理平台的成功开发将大大简化和加速药物筛选过程。该传感平台的主要模块由银(Ag)或金(Au)纳米粒子装饰的氧化锌纳米棒涂覆的二氧化硅纳米纤维组成基质(Ag/AuNP-ZnONR-SNFnanosensor)。将结合机器学习算法来实现药物多重检测的自动定量分析,无需经过培训的专业知识。该项目的目标将通过完成以下三项研究任务来实现:(1)纳米传感器材料的开发和表征,以实验证明使用该装置对药物进行表面增强等离子体传感的可行性。该器件通过静电纺丝二氧化硅纳米纤维作为支撑基体,水热生长涂覆在二氧化硅纳米纤维上的ZnO纳米棒,并分别通过紫外线照射或种子介导生长方法在ZnONR-SNF基体表面合成Ag和Au纳米粒子来制造。 (2)通过针对不同生物流体样品调整基于纳米材料的传感模块的几何形状、尺寸和结构,优化传感性能,包括传感器的灵敏度、检测限(LoD)、重复性和稳定性。 (3) 使用预先嵌入的深度神经网络模型开发机器学习 (ML) 算法,该模型由使用我们的传感器获得的许多数据样本进行训练,以识别和量化来自不同样本源的多种药物。该算法的成功实施将实现准确、自动、快速和多重的药物检测。该项目将提供新的方法和数据,以应对理解和监测当前药物过量危机的挑战。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing Zhang其他文献
Effect of Fe (II) in low-nitrogen sewage on the reactor performance and microbial community of an ANAMMOX biofilter
低氮污水中 Fe (II) 对厌氧氨氧化生物滤池反应器性能和微生物群落的影响
- DOI:
10.1016/j.chemosphere.2018.02.131 - 发表时间:
2018 - 期刊:
- 影响因子:8.8
- 作者:
Xiaojing Zhang;Yue Zhou;Siyu Zhao;Rongrong Zhang;Zhaoxue Peng;Hanfei Zhai;Hongzhong Zhang - 通讯作者:
Hongzhong Zhang
Cu2O-based binary and ternary photocatalysts for the degradation of organic dyes under visible light
Cu2O基二元和三元光催化剂在可见光下降解有机染料
- DOI:
10.1016/j.ceramint.2021.09.255 - 发表时间:
2021-09 - 期刊:
- 影响因子:5.2
- 作者:
Weijie Lei;Hao Wang;Xiaojing Zhang;Zhimao Yang;Chuncai Kong - 通讯作者:
Chuncai Kong
Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review
用于检测疾病相关生物标志物的声波生物传感器的最新进展:综述
- DOI:
10.1016/j.aca.2021.338321 - 发表时间:
2021 - 期刊:
- 影响因子:6.2
- 作者:
Junyu Zhang;Xiaojing Zhang;Xinwei Wei;Yingying Xue;Hao Wan;Ping Wang - 通讯作者:
Ping Wang
An improved Wellman-Lord process for simultaneously recovering SO2 and removing NOX from non-ferrous metal smelting flue gas
有色金属冶炼烟气中同时回收SO2和脱除NOX的改进Wellman-Lord工艺
- DOI:
10.1016/j.cej.2020.125658 - 发表时间:
2020-11 - 期刊:
- 影响因子:15.1
- 作者:
Feng Shi;Kan Li;Diwen Ying;Jinping Jia;Naiqiang Yan;Xiaojing Zhang - 通讯作者:
Xiaojing Zhang
Boron induced strong metal-support interaction for high sintering resistance of Pt-based catalysts toward oxygen reduction reaction
硼诱导强金属-载体相互作用,使铂基催化剂对氧还原反应具有高抗烧结性
- DOI:
10.1016/j.apsusc.2022.154466 - 发表时间:
2022-08 - 期刊:
- 影响因子:6.7
- 作者:
Dan Liu;Saisai Gao;Jianzhi Xu;Xiaojing Zhang;Zhimao Yang;Tao Yang;Bin Wang;Shengchun Yang;Chao Liang;Chuncai Kong - 通讯作者:
Chuncai Kong
Xiaojing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing Zhang', 18)}}的其他基金
EAGER: Plasmonic Sensing in Liquid with Metal-Insulator-Metal Nanosensors Embedded in Soft Matrices
EAGER:使用嵌入软基体中的金属-绝缘体-金属纳米传感器在液体中进行等离子体传感
- 批准号:
2332818 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Mesoporous PVDF Thin Film Device for Implantable Cardiac Power Generation
用于植入式心脏发电的介孔 PVDF 薄膜器件
- 批准号:
1509369 - 财政年份:2015
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Aligned Core-Shell Piezoelectric Nanofibers based Pressure Sensors on Catheter
导管上基于对齐核壳压电纳米纤维的压力传感器
- 批准号:
1309686 - 财政年份:2013
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Nanolayered PVDF Thin Film Device for Implantable Cardiac Power Generation
用于植入式心脏发电的纳米层 PVDF 薄膜器件
- 批准号:
1128677 - 财政年份:2011
- 资助金额:
$ 39.95万 - 项目类别:
Continuing Grant
CAREER: Nano-plasmonic Scanning Probe and Microsystems for Controlled Genetic Perturbation
职业:用于受控遗传扰动的纳米等离子体扫描探针和微系统
- 批准号:
0846313 - 财政年份:2009
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
IMR: Development of Near-Field Nanophotonic Scanning Microscope for Biomaterials Research and Education
IMR:开发用于生物材料研究和教育的近场纳米光子扫描显微镜
- 批准号:
0817541 - 财政年份:2008
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Plasmonic Nanofocusing Scanning Probe for Controlled Nanomanufacturing
用于受控纳米制造的等离子纳米聚焦扫描探针
- 批准号:
0826366 - 财政年份:2008
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Academic Travel Support for Organizing 2007 MRS Workshop on Multi-scale Materials at the Biological Interface
为组织 2007 年 MRS 生物界面多尺度材料研讨会提供学术旅行支持
- 批准号:
0735915 - 财政年份:2007
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
EPDT: Nano-scale Light Emitting Diode on Silicon Cantilever for Near-field Microscopy of Nanovectors Biodistribution in Tissues and Living Cells
EPDT:硅悬臂梁上的纳米级发光二极管,用于组织和活细胞中纳米载体生物分布的近场显微镜检查
- 批准号:
0725886 - 财政年份:2007
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
NER: Integration of Nanoscale Photonics with Silicon MEMS Injector for Studies on the Embryonic Development Through Calibrated Genetic Perturbation
NER:纳米级光子学与硅 MEMS 注射器的集成,通过校准的遗传扰动研究胚胎发育
- 批准号:
0609413 - 财政年份:2006
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
相似国自然基金
面向空间成像自由曲面镜的波长扫描及双波前校正精密检测技术研究
- 批准号:52305585
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
界面调控水凝胶三元复合电极活性氧自由基检测的增敏机制研究
- 批准号:62301125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向制造的光学自由曲面高精度快速智能干涉检测新方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
用于联动检测多硫化物自由基阴离子协同生物活性物种调控细胞信号转导的超分辨成像荧光探针研究
- 批准号:22264013
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于适配体及CNTs@MFe2O4/DNA构建非自由基驱动的比色-电化学纸芯片双模式检测有机磷农残
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Label-free, live-cell classification of neural stem cell activation state and dynamics
神经干细胞激活状态和动力学的无标记活细胞分类
- 批准号:
10863309 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Highly Sensitive Detection of Occult Pancreatic Cancer Using Intraoperative Molecular Imaging
使用术中分子成像高灵敏度检测隐匿性胰腺癌
- 批准号:
10660471 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
- 批准号:
10655918 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别: