CAREER: New Frontiers in the Dynamics of Topological Solitons

职业:拓扑孤子动力学的新领域

基本信息

  • 批准号:
    2235233
  • 负责人:
  • 金额:
    $ 43.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

Nonlinear waves are ubiquitous in nature, ranging from the dynamics of quantum particles to the propagation of electromagnetic radiation and gravitational waves. Mathematically, many such wave propagation phenomena can be described in terms of nonlinear dispersive equations. While waves typically spread out and decay, a striking feature of these nonlinear evolution equations is that they may admit particle-like solutions, often called solitons, whose shapes persist as time goes by. The mathematical understanding of their dynamics is still far from complete. The main research goal of this project is to investigate, in the context of classical topological field theories that arise in mathematical physics, how nonlinear waves can form particle-like structures and how these structures interact with each other. The educational component of the project seeks to enhance the training of graduate students and postdocs by organizing minicourses and workshops related to the research of the project and by providing professional development opportunities with an emphasis on presentation skills.This project focuses on soliton dynamics for several well-known classical topological field theories in mathematical physics. Three prime examples of topological solitons are at the center of the investigation: kinks, vortices, and skyrmions in one, two, and three space dimensions, respectively. Heuristically, these solitons owe their stability to their topological underpinnings. However, the mathematical justification of this intuition is still rather poorly understood and mostly open. The overarching goal of the project is to establish asymptotic stability results for these classical topological solitons, and thus to rigorously justify the heuristics for their stability. Over the course of the project the investigator also plans to move towards studying multi-soliton configurations in these and related settings. Beyond the intrinsic interest in the fundamental problems at the center of this project, their resolution will have significant impact on the analysis of strong nonlinear interactions between solitons and radiation in the context of many other nonlinear dispersive equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非线性波在自然界中无处不在,从量子粒子的动力学到电磁辐射和引力波的传播。从数学上讲,许多此类波传播现象可以用非线性色散方程来描述。虽然波通常会扩散和衰减,但这些非线性演化方程的一个显着特征是它们可能允许类粒子解(通常称为孤子),其形状随着时间的推移而持续存在。对它们动力学的数学理解还远未完成。该项目的主要研究目标是在数学物理中出现的经典拓扑场论背景下研究非线性波如何形成粒子状结构以及这些结构如何相互作用。该项目的教育部分旨在通过组织与项目研究相关的迷你课程和研讨会以及提供强调演示技能的专业发展机会来加强研究生和博士后的培训。该项目重点关注几个井的孤子动力学-数学物理学中著名的经典拓扑场论。拓扑孤子的三个主要例子是研究的中心:分别是一维、二维和三维空间中的扭结、涡旋和斯格明子。启发式地讲,这些孤子的稳定性归功于它们的拓扑基础。然而,这种直觉的数学论证仍然知之甚少,而且大多是开放的。该项目的总体目标是为这些经典拓扑孤子建立渐近稳定性结果,从而严格证明其稳定性的启发式方法的合理性。在该项目的过程中,研究人员还计划研究这些和相关环境中的多孤子配置。除了对该项目核心的基本问题的内在兴趣之外,这些问题的解决将对在许多其他非线性色散方程的背景下孤子和辐射之间的强非线性相互作用的分析产生重大影响。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonas Luhrmann其他文献

Decay and asymptotics for the one-dimensional Klein-Gordon equation with variable coefficient cubic nonlinearities
具有变系数三次非线性的一维 Klein-Gordon 方程的衰变和渐近
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hans Lindblad;Jonas Luhrmann;Avy Soffer
  • 通讯作者:
    Avy Soffer

Jonas Luhrmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonas Luhrmann', 18)}}的其他基金

Conference: Texas Analysis and Mathematical Physics Symposium 2024
会议:2024 年德克萨斯分析与数学物理研讨会
  • 批准号:
    2331234
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Standard Grant
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
  • 批准号:
    2230164
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Standard Grant
Asymptotic Dynamics of Nonlinear Wave and Dispersive Equations
非线性波和色散方程的渐近动力学
  • 批准号:
    1954707
  • 财政年份:
    2020
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Standard Grant

相似国自然基金

溶酶体膜蛋白LAMP2新突变Y228*促进心肌细胞糖代谢异常导致Danon病心肌病的机制研究
  • 批准号:
    82360048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
  • 批准号:
    32371451
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
甜菊糖苷新位点糖基化的机制研究及其在低热量甜味剂结构创新中的应用
  • 批准号:
    32372277
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
  • 批准号:
    82373758
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
  • 批准号:
    82371818
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
  • 批准号:
    2339775
  • 财政年份:
    2024
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
  • 批准号:
    2238766
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
  • 批准号:
    2239869
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Quantum Protocols, Operator Algebras, and Property Testing
职业:量子协议、算子代数和属性测试的新领域
  • 批准号:
    2144219
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
  • 批准号:
    2146343
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了