Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly

合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制

基本信息

  • 批准号:
    2317398
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The aim of the research is to develop novel strategies for metabolite sensing and metabolite-induced enzyme localization; this will contribute to fundamental cellular knowledge and improve the efficiency of bioprocesses that are associated with synthetic biology. In nature, many microorganisms have evolved to survive across different growth-permissive conditions. This adaptability is achieved through a highly coordinated metabolic network that tightly regulates the activity of cellular components at the required level in order to adjust to fluctuating nutrient conditions. A detailed analysis of these metabolites would provide a deeper understanding of their physiological roles in promoting and regulating cellular processes. To achieve this, the research exploits the reversible reconstitution of split RNA aptamer fragments for real-time metabolite sensing. The same reversible split aptamer assembly design is also exploited to create dynamic metabolons to reveal insights into yeast metabolism for optimizing product synthesis. The tool sets developed are easily transferrable to other eukaryotes such as mammalian cells to address fundamental questions about regulation and rewiring of metabolism. The research spans the core disciplines of biology, chemistry, and engineering, in providing ample opportunities for student training at all levels and in multiple areas. This project also facilitates outreach activities to local high school teachers and students through existing programs available at the University of Delaware and UC Irvine.Real-time quantification of intracellular metabolites is essential for our ability to interrogate, understand, and engineer metabolism in a range of biological systems. This project exploits the reversible reconstitution of split RNA aptamer fragments as a new framework for real-time metabolite sensing. Using a Cas6-mediated protein-RNA assembly strategy, real-time probing of metabolite-induced split RNA aptamer reconstitution is monitored using the reversible assembly of a split fluorescent protein reporter. The reversible nature of split aptamer assembly is also exploited to create dynamic metabolons for metabolite-responsive control of metabolism that is useful for a wide range of fundamental studies and synthetic biology applications. This research impacts the field of synthetic biology by creating a new method for real-time metabolite sensing and for metabolite-mediated dynamic assembly of metabolons in many organisms of interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究的目的是开发代谢物传感和代谢物诱导酶定位的新策略;这将有助于基础细胞知识并提高与合成生物学相关的生物过程的效率。在自然界中,许多微生物已经进化到能够在不同的生长条件下生存。这种适应性是通过高度协调的代谢网络实现的,该网络将细胞成分的活性严格调节在所需水平,以适应波动的营养条件。对这些代谢物的详细分析将有助于更深入地了解它们在促进和调节细胞过程中的生理作用。为了实现这一目标,该研究利用分裂 RNA 适体片段的可逆重构来进行实时代谢物传感。同样的可逆分裂适体组装设计也被用来创建动态代谢,以揭示酵母代谢的见解,从而优化产品合成。开发的工具集可以轻松转移到其他真核生物,例如哺乳动物细胞,以解决有关代谢调节和重新布线的基本问题。该研究跨越生物学、化学和工程学的核心学科,为学生在各个层次和多个领域的培训提供了充足的机会。该项目还通过特拉华大学和加州大学欧文分校的现有项目促进当地高中教师和学生的外展活动。细胞内代谢物的实时量化对于我们询问、理解和设计一系列代谢的能力至关重要。生物系统。该项目利用分裂 RNA 适体片段的可逆重构作为实时代谢物传感的新框架。 使用 Cas6 介导的蛋白质-RNA 组装策略,利用分裂荧光蛋白报告基因的可逆组装来​​监测代谢物诱导的分裂 RNA 适体重建的实时探测。分裂适体组装的可逆性质也被用来创建动态代谢物,用于代谢物响应控制代谢,这对于广泛的基础研究和合成生物学应用非常有用。这项研究通过创建一种新方法来实时代谢物传感和代谢物介导的代谢物在许多感兴趣的生物体中的动态组装,影响了合成生物学领域。该奖项反映了 NSF 的法定使命,并通过使用评估方法进行评估,认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilfred Chen其他文献

Synthesis of gold nanostructures using glycine as the reducing agent
以甘氨酸为还原剂合成金纳米结构
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Joun Lee;Sanggon Kim;Syed Mubeen;A. Mulchandani;Wilfred Chen;Y. Choa;N. Myung
  • 通讯作者:
    N. Myung
Tunable immunosorbents for the remediation of atrazine- and simazine-contaminated waters - eScholarship
用于修复莠去津和西玛津污染水域的可调免疫吸附剂 - eScholarship
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wilfred Chen;A. Mulchandani
  • 通讯作者:
    A. Mulchandani
Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques.
使用缩小过滤技术开发基于 ELP-Z 的 mAb 亲和沉淀工艺。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Rahul D Sheth;Bharat V. Bhut;Mi Jin;Z. Li;Wilfred Chen;S. Cramer
  • 通讯作者:
    S. Cramer
Strategies for Multienzyme Assemblies.
多酶组装策略。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Sun;M. Raeeszadeh;Shen;Wilfred Chen
  • 通讯作者:
    Wilfred Chen
Elevated Fis expression enhances recombinant protein production in Escherichia coli.
Fis 表达升高可增强大肠杆菌中重组蛋白的产量。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    R. Richins;Tin Htay;Pauli Kallio;Wilfred Chen
  • 通讯作者:
    Wilfred Chen

Wilfred Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilfred Chen', 18)}}的其他基金

Logic-gated pro-MMP activation for tumor-specific motility in nanocarriers
纳米载体中肿瘤特异性运动的逻辑门控 MMP 前体激活
  • 批准号:
    2220667
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Synthetic methane fixation cascades based on engineered membrane vesicles for biofuel cell applications
合作研究:基于工程膜囊泡的合成甲烷固定级联,用于生物燃料电池应用
  • 批准号:
    2221893
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Rapid purification of recombinant proteins by protein nanoparticle crosslinking and light-responsive nanobodies
通过蛋白质纳米颗粒交联和光响应纳米抗体快速纯化重组蛋白
  • 批准号:
    2040749
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Synthetic CRISPR-Cas6 endonucleases for dynamic control of cellular phenotypes in yeast
合作研究:用于动态控制酵母细胞表型的合成 CRISPR-Cas6 核酸内切酶
  • 批准号:
    2013991
  • 财政年份:
    2020
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic degradation of proteins by ubiquitination provides a novel therapeutic for controlling elevated protein levels
合作研究:通过泛素化动态降解蛋白质为控制蛋白质水平升高提供了一种新的治疗方法
  • 批准号:
    1803008
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Redirecting cellular metabolism via synthetic toehold-gated dCas9 regulators
合作研究:通过合成的门控 dCas9 调节器重定向细胞代谢
  • 批准号:
    1817675
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Biochemical and Molecular Engineering XX Conference
生化与分子工程XX会议
  • 批准号:
    1739060
  • 财政年份:
    2017
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Repurposing the CRISPR-Cas9 system for dynamic control of cellular metabolism
重新利用 CRISPR-Cas9 系统动态控制细胞代谢
  • 批准号:
    1615731
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advanced biomanufacturing of functional bionanoparticles for biomedical engineering applications
合作研究:用于生物医学工程应用的功能性生物纳米颗粒的先进生物制造
  • 批准号:
    1604925
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Design of Multi-Functional SplitCore HBV Capsids for Precisely Controlled Multi-siRNA Delivery in Cancer Therapeutics
设计多功能 SplitCore HBV 衣壳,用于癌症治疗中精确控制的多 siRNA 递送
  • 批准号:
    1609621
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
  • 批准号:
    81872577
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
美国国家科学基金会组织与管理的法律制度研究
  • 批准号:
    L0822107
  • 批准年份:
    2008
  • 资助金额:
    9.5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了