CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
基本信息
- 批准号:2317302
- 负责人:
- 金额:$ 59.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The industrial production of fertilizer – produced from ammonia (NH3) generated by the energy-intensive, fossil fuel-dependent Haber-Bosch (H-B) process - has disrupted the natural nitrogen cycle, resulting in groundwater pollution from nitrates (NO3-). The project utilizes electrochemistry to react nitrate compounds with hydrogen (derived sustainably from water) to manufacture NH3, while simultaneously decomposing the nitrate pollutants and restoring balance to the nitrogen cycle. Specifically, the research focuses on the discovery and design of catalysts that enable efficient nitrate-to-ammonia transformation driven by renewable electricity. Beyond the technical aspects, the project will train students from diverse groups at the interface of catalysis, chemistry, and engineering. The research will be integrated with educational and outreach efforts to illustrate the importance of sustainability in daily life while stimulating excitement for STEM amongst K-12 youth, especially those from low-income families. The electrochemical nitrate reduction reaction (NO3RR) offers a potentially attractive distributed NH3 production route, because it utilizes nitrate pollutants as the N-source, thus circumventing activation of the strong N≡N triple bond associated with the H-B process. The project will develop design strategies for single-atom alloy (SAA) electrocatalysts for the NO3RR and advance the fundamental understanding of both the catalytic active sites and the elementary mechanisms. The project is built on the central hypothesis that surface doping of Cu nanocrystals with isolated metal atoms (for example, Pt, Pd, Rh, or Ru) creates well-defined sites that activate water molecules and generate H-atoms that spill over to the Cu. The H-atoms hydrogenate N-species at low overpotentials and selectively tailoring of the binding strength of NO3RR surface intermediates through narrowly distributed d-states of single atoms for high-rate production of NH3, can potentially go beyond adsorption-energy scaling limitations. Catalyst synthesis, characterization, and electrochemical evaluation will be facilitated by advanced characterization techniques including operando surface-enhanced infrared absorption spectroscopy, differential electrochemical mass spectrometry, in-situ X-ray absorption spectroscopy, advanced electron microscopy, and computational tools such as density functional theory. The educational components of the project include (1) integrating research into the curriculum, (2) interdisciplinary student training, (3) involving diverse underrepresented students in science and engineering, and (4) implementing STEM-based outreach programs through the Center for Enhancement of Engineering Diversity at Virginia Tech and summer programs at Wonder Universe: A Children’s Museum. In addition, the newly launched Virginia Clean Energy and Catalysis Club will be leveraged as a platform to promote student training. The outreach plan also includes the development of an interactive play-based pedagogical platform, “Sustainable City in Minecraft,” that will provide young students the opportunity to design and construct a futuristic sustainable city.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
肥料的工业生产——由能源密集型、依赖化石燃料的哈伯-博世 (H-B) 工艺产生的氨 (NH3) 产生的——扰乱了自然氮循环,导致硝酸盐 (NO3-) 项目污染地下水。利用电化学使硝酸盐化合物与氢(可持续地从水中提取)反应来制造 NH3,同时分解硝酸盐污染物并恢复氮循环的平衡。研究重点是发现和设计催化剂,以实现由可再生电力驱动的高效硝酸盐到氨的转化。除了技术方面之外,该项目还将在催化、化学和工程方面对来自不同群体的学生进行培训。与教育和宣传工作相结合,以说明可持续性在日常生活中的重要性,同时激发 K-12 青少年(尤其是来自低收入家庭的青少年)对 STEM 的兴趣。电化学硝酸盐还原反应 (NO3RR) 提供了一种具有潜在吸引力的分布式 NH3 生产。路线,因为它利用硝酸盐污染物作为氮源,从而避免了与 H-B 过程相关的强 N=N 三键的活化。该项目将开发用于 NO3RR 的单原子合金 (SAA) 电催化剂的设计策略,并推进基础研究。该项目建立在铜纳米晶体表面掺杂孤立金属原子(例如 Pt、Pd、 Rh(或 Ru)创建明确的位点,激活水分子并生成溢出至 Cu 的 H 原子。H 原子在低过电势下氢化 N 物质,并通过窄范围选择性调整 NO3RR 表面中间体的结合强度。用于高速率生产 NH3 的分布式 d 态可能会超越吸附能缩放限制 先进的表征技术(包括)将有助于催化剂合成、表征和电化学评估。操作表面增强红外吸收光谱、微分电化学质谱、原位 X 射线吸收光谱、先进电子显微镜以及密度泛函理论等计算工具。该项目的教育组成部分包括 (1) 将研究纳入课程。 ,(2) 跨学科学生培训,(3) 涉及科学和工程的多元化学生,以及 (4) 通过弗吉尼亚理工大学工程多样性增强中心实施基于 STEM 的外展计划,以及奇妙宇宙:儿童博物馆的暑期项目还将利用新推出的弗吉尼亚清洁能源和催化俱乐部作为促进学生培训的平台,该推广计划还包括开发一个基于游戏的互动教学平台。 “我的世界中的可持续城市”,将为年轻学生提供设计和建造未来可持续城市的机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia
- DOI:10.1038/s44160-023-00258-x
- 发表时间:2023-07-01
- 期刊:
- 影响因子:0
- 作者:Gao, Qiang;Yao, Bingqing;Zhu, Huiyuan
- 通讯作者:Zhu, Huiyuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiyuan Zhu其他文献
Validation of 1D model for methane/air/Pt combustion in a stagnation flow
停滞流中甲烷/空气/Pt 燃烧的一维模型验证
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Minghou Liu;Dan Xing;Yuzhou Lu;Huiyuan Zhu - 通讯作者:
Huiyuan Zhu
Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance
通过气体驱动剥离形成少层石墨烯以增强超级电容性能
- DOI:
10.1016/j.jechem.2017.09.018 - 发表时间:
2017-09 - 期刊:
- 影响因子:13.1
- 作者:
Peiwen Wu;Jing He;Linlin Chen;Yingcheng Wu;Hongping Li;Huiyuan Zhu;Huaming Li;Wenshuai Zhu - 通讯作者:
Wenshuai Zhu
Mesoporous Carbon-supported Ultrasmall Metal Nanoparticles via a Mechanochemical-driven Redox Reaction: A “Two-in-One” Strategy
通过机械化学驱动的氧化还原反应制备介孔碳支撑的超小金属纳米粒子:“二合一”策略
- DOI:
10.1016/j.apcatb.2021.120232 - 发表时间:
2021-04 - 期刊:
- 影响因子:22.1
- 作者:
Tian Jin;Xiaofei Liu;Ya-Qiong Su;Fenghongkang Pan;Xue Han;Huiyuan Zhu;Rongqian Wu;Yi Lyu - 通讯作者:
Yi Lyu
Numerical simulation of temperature field around buried pipes of ground source heat pumps based on mathematical models
- DOI:
10.2298/tsci2402441z - 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Huiyuan Zhu - 通讯作者:
Huiyuan Zhu
Serum macrophage migration inhibitory factor as a potential biomarker to evaluate therapeutic response in patients with allergic asthma: an exploratory study
血清巨噬细胞迁移抑制因子作为评估过敏性哮喘患者治疗反应的潜在生物标志物:一项探索性研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Huiyuan Zhu;Shaochun Yan;Jingshuo Wu;Zhong Zhang;Xiaolin Li;Zheng Liu;Xing Ma;Lina Zhou;Lin Zhang;Mingming Feng;Yiwei Geng;Aixin Zhang;S. Janciauskiene;Aiguo Xu - 通讯作者:
Aiguo Xu
Huiyuan Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huiyuan Zhu', 18)}}的其他基金
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2332802 - 财政年份:2023
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
- 批准号:
2143710 - 财政年份:2022
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2102363 - 财政年份:2021
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant
相似国自然基金
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAREER: Engineering the Reactivity of Single Atom Electrocatalysts Beyond their Active Site
职业:设计单原子电催化剂的活性位点之外的反应性
- 批准号:
2340693 - 财政年份:2024
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAREER: Single-Atom Alloy Catalyst Design for the Electrocatalytic Reduction of Nitrate to Ammonia: Linking Electronic Structure to Geometry and Catalytic Performance
职业:用于硝酸盐电催化还原为氨的单原子合金催化剂设计:将电子结构与几何结构和催化性能联系起来
- 批准号:
2236138 - 财政年份:2023
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
- 批准号:
2143710 - 财政年份:2022
- 资助金额:
$ 59.29万 - 项目类别:
Continuing Grant
CAREER: Revealing spin-state-dependent reactivity in open-shell single atom catalysts with systematically-improvable computational tools
职业:利用可系统改进的计算工具揭示开壳单原子催化剂中自旋态依赖的反应性
- 批准号:
1846426 - 财政年份:2019
- 资助金额:
$ 59.29万 - 项目类别:
Standard Grant