Electrically-driven silicon single-photon source
电驱动硅单光子源
基本信息
- 批准号:2231901
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum light sources are enablers of quantum information processing, communications, sensing and imaging. Further progress demands single-photon sources that are electrically-driven (i.e. electrically triggered), emit at a low-loss telecom wavelength, and can be miniaturized and integrated with silicon electronic circuits. This project aims to pilot the development of such single-photon sources that are not yet available. Success in this endeavor would represent an unprecedented advance in the field and would helppush the boundaries of quantum information technology, which in turn could lead to expansion of our capabilities in advancing optical and materials sciences in the quantum domain. In so doing, the proposed effort will also catalyze transformative advances of our engineering education and training programs towards quantum technologies, thereby not only impacting the training of postdocs, graduates, and undergraduates.The proposed effort leverages a prior limit-breaking effort in generating bright stimulated emission in the telecom O-band (~1.3 μm) from a crystalline silicon patterned with periodically distributed G-centers – also known as the carbon-silicon ‘color-center’. This project too will push the boundary, but to the opposite limit – i.e. to electrically-pumped single-photon emission, which is unprecedented in silicon and monochromatic (zero-phonon). Enabled by the innovative nanopatterning of a Si crystal with a 2D periodic array of nanoscale holes, it would create a periodic distribution of G-centers embedded in the sidewall of the nanohole which is also mechanically strained and bandgap lowered. As demonstrated in our earlier reports, this would allow one to create the emissive G-centers with little increase in the overall optical loss while simultaneously channeling the injected charge carriers to the G-centers for recombination and emission. Furthermore, the periodic patterning will be designed in such a way that the spontaneous emission rate can be enhanced via the Purcell effect. This will be achieved by engineering the structure and periodicity of the nano-hole array to create a photonic crystal with a small mode volume and a high density of photon states to peak at/near the frequency of the G-center emission. An extra enhancement can be achieved by blocking the leakage hole current with a thin barrier layer while still allowing electrons to tunnel through. The photon collection efficiency will be maximized with both the holey low-index silicon layer and the transparent electrode as well as the design of the photonic crystal structure (nanohole array) with the stop band in the lateral direction and the emission cone in the perpendicular direction. The top electrodes, also to be patterned into an array of macroscopic sizes, would allow selective pumping of individual SPS zones so as to allow selection of single-photon emitters that are brightest, monochromatic and yet still satisfy the single-photon criterion. These measures are expected to provide us the first-ever, arrayed, electrically-pumped, monochromatic silicon single-photon sources in the telecom O-band that are compatible to and ready for integration with silicon electronics for quantum information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子光源是量子信息处理、通信、传感和成像的推动者,需要电驱动(即电触发)、以低损耗电信波长发射、并且可以小型化和集成的单光子源。该项目旨在试点开发目前尚不可用的单光子源,这将代表该领域前所未有的进步,并将有助于推动量子信息技术的发展,进而引领量子信息技术的发展。扩大我们在量子领域推进光学和材料科学的能力,这样做,拟议的努力还将促进我们的工程教育和培训项目量子技术的变革性进步,从而不仅影响博士后、毕业生和学生的培训。拟议的工作利用了先前的突破性努力,从具有周期性分布的 G 中心图案的晶体硅(也称为碳硅)产生电信 O 波段(~1.3 μm)的明亮受激发射该项目也将突破界限,但达到相反的极限——即电泵浦单光子发射,这在硅和单色(零声子)中是前所未有的。具有纳米级孔的二维周期性阵列的硅晶体,它将产生嵌入纳米孔侧壁的周期性分布的 G 中心,该纳米孔也受到机械应变并且带隙降低,如所证明的。在我们之前的报告中,这将允许人们在总体光学损耗几乎没有增加的情况下创建发射 G 中心,同时将注入的电荷载流子引导到 G 中心进行重组和发射。此外,周期性图案将被设计。这种方式可以通过珀塞尔效应增强自发发射率,这将通过设计纳米孔阵列的结构和周期性来创建具有小模式体积和高光子态密度的光子晶体来实现。顶峰在/接近 G 中心发射的频率,可以通过用薄势垒层阻挡漏电空穴电流来实现,同时仍然允许电子隧道通过,从而使带孔低层的光子收集效率最大化。折射率硅层和透明电极以及光子晶体结构(纳米孔阵列)的设计,其中阻带位于横向,发射锥位于垂直方向。顶部电极也将被图案化为阵列。宏观的尺寸,将允许对各个 SPS 区域进行选择性泵浦,以便选择最亮、单色但仍满足单光子标准的单光子发射器。这些措施有望为我们提供有史以来第一个阵列式电学发射器。 - 电信 O 波段中的泵浦、单色硅单光子源,与用于量子信息处理的硅电子器件兼容并准备好集成。该奖项反映了 NSF 的法定使命,并通过使用评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jimmy Xu其他文献
Growth of 4-N,N-Dimethylamino-4'-N'-methyl-stilbazolium Tosylate (DAST) Organic Single Crystals Controlled by Oleic Acid
- DOI:
10.3390/cryst9100494 - 发表时间:
2019-09-25 - 期刊:
- 影响因子:2.7
- 作者:
X. Wen;Xiangdong Xu;Huaxin Zhou;Lu Hu;Yangyang Jing;Jimmy Xu;X. Cheng;Jia Shi;Xin;Ting Fan;Min;Yu Gu - 通讯作者:
Yu Gu
Subwavelength silicon microcavities.
亚波长硅微腔。
- DOI:
10.1364/oe.17.023323 - 发表时间:
2009-12-07 - 期刊:
- 影响因子:3.8
- 作者:
J. Shainline;S. Elston;Zhijun Liu;G. Fernandes;R. Zia;Jimmy Xu - 通讯作者:
Jimmy Xu
Modular, self‐assembling peptide linkers for stable and regenerable carbon nanotube biosensor interfaces
用于稳定和可再生碳纳米管生物传感器接口的模块化自组装肽接头
- DOI:
10.1002/jmr.783 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:2.7
- 作者:
M. Contarino;M. Sergi;A. Harrington;A. Lazareck;Jimmy Xu;I. Chaiken - 通讯作者:
I. Chaiken
Optical rectification in a reconfigurable resistive switching filament
可重构电阻开关灯丝中的光整流
- DOI:
10.1063/1.5091562 - 发表时间:
2019-07-22 - 期刊:
- 影响因子:4
- 作者:
Declan Oller;R. Osgood;Jimmy Xu;G. Fernandes - 通讯作者:
G. Fernandes
Broad tuning of whispering-gallery modes in silicon microdisks.
硅微盘中回音壁模式的广泛调整。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.8
- 作者:
J. Shainline;G. Fernandes;Zhijun Liu;Jimmy Xu - 通讯作者:
Jimmy Xu
Jimmy Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jimmy Xu', 18)}}的其他基金
SNM: Physical Nano-Engineering Approaches to Surface Coloration and their Industrial Scale Implementation in Anodized Aluminum
SNM:表面着色的物理纳米工程方法及其在阳极氧化铝中的工业规模实施
- 批准号:
1530547 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Atomic-Layer Engineered Infrared-Plasmonic, Low Loss, Oxide Metamaterials
原子层工程红外等离子体、低损耗、氧化物超材料
- 批准号:
1408743 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
PFI:BIC A Wireless Networked Biophilic Lighting System for the Delivery of Lighting for Enhancing Secondary School Student Performance
PFI:BIC 无线网络亲自然照明系统,用于提供照明以提高中学生的表现
- 批准号:
1430007 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Synthesis, Material Investigation and Device Effect Demonstration of Nano Diamond Wires
EAGER:纳米金刚石线的合成、材料研究和器件效应演示
- 批准号:
1324776 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPIN ELECTRONICS: Spintronics in Y-junction carbon nanotubes
自旋电子学:Y 结碳纳米管中的自旋电子学
- 批准号:
0223943 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collective Behavior in Ordered Arrays of Nanostructures - Physics and Technology Opportunities
纳米结构有序阵列中的集体行为 - 物理和技术机会
- 批准号:
0070019 - 财政年份:2000
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Binary SuperGrating Optics - An Enabling Concept and Explorations
二元超光栅光学器件——一个可行的概念和探索
- 批准号:
0084710 - 财政年份:2000
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
红壤性水稻土硅形态转化及供硅能力的微生物驱动机制
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
不同植被下热带强发育土壤的硅循环特征及其对土壤演变的驱动机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
类脑脉冲驱动在线学习的多层次融合硅脑建模
- 批准号:62006170
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于植硅体分析的全新世松嫩草原古植被动态变化及其驱动机制
- 批准号:41971100
- 批准年份:2019
- 资助金额:61 万元
- 项目类别:面上项目
低驱动电压聚合物/硅垂直梳齿执行器的多自由度耦合运动与控制研究
- 批准号:51705405
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
- 批准号:
10587508 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Silicon nanoparticle/conjugated polymer hybrids for solar driven hydrogen production
用于太阳能驱动制氢的硅纳米粒子/共轭聚合物杂化物
- 批准号:
562922-2021 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants
Silicon nanoparticle/conjugated polymer hybrids for solar driven hydrogen production
用于太阳能驱动制氢的硅纳米粒子/共轭聚合物杂化物
- 批准号:
562922-2021 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants
Collaborative Research: Production of Solar Quality Silicon by Model-Driven Molten Salt Electrolysis
合作研究:通过模型驱动熔盐电解生产太阳能级硅
- 批准号:
1937818 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Production of Solar Quality Silicon by Model-Driven Molten Salt Electrolysis
合作研究:通过模型驱动熔盐电解生产太阳能级硅
- 批准号:
1937829 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant