Alternative transducer and optical pumping scheme for nanoscale thermal metrology and imaging
用于纳米级热计量和成像的替代传感器和光泵浦方案
基本信息
- 批准号:2315077
- 负责人:
- 金额:$ 40.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Heat dissipation is intrinsic to technologies ranging from micro- and power-electronics to energy-storage devices and thermoelectrics. The ability to characterize and understand thermal transport processes can help regulate the flow of heat and improve device functionality, efficiency, and stability, especially for those made of materials with poor thermal conductivities. Nonetheless, measuring thermal transport in low thermal-conductivity materials at a high spatial resolution is still challenging. A new approach is proposed here, in which the heat flow will be directly imaged by a high-speed camera with spatial resolution down to hundreds of nanometers. The proposed approach is laser-based, hence non-contact, and will take advantage of organic semiconducting materials, which are abundant and ubiquitously used in organic light-emitting diodes and displays. The organic semiconductors will serve as local temperature reporters of materials underneath, whose thermal conductivity can be assessed by observing how quickly the temperature of the organic semiconductor varies in time. The project will provide extensive training opportunities to graduate and undergraduate students in the construction and modification of comprehensive optical measurement systems with high spatial and temporal resolution. K-12 students from local public high schools will gain understanding and experience in state-of-the-art thermal metrology experiments.Defects, grain boundaries, among other types of inhomogeneities are characteristics of materials that are not single crystals or epitaxial films. To understand the influence of such imperfections on heat transport in emerging energy-related materials, the team will explore organic semiconductors as an alternative type of transducer for optical pump-probe thermoreflectance measurements. The morphology, optical properties, and thermal transport properties of several prototypical organic semiconductors will be thoroughly investigated over a wide temperature range. Meanwhile, a time-resolved, wide-field optical imaging setup will be constructed, which will permit efficient thermal excitation of organic transducers and their accurate temperature monitoring with nanosecond time resolution. The team will perform proof-of-concept experiments to spatiotemporally imaging the flow of heat in heterogeneous energy materials and in prototypical two-dimensional ferromagnetic materials. It is expected that the alternative transducer and imaging technique proposed here can complement the existing thermoreflectance techniques for the investigation of thermal transport properties of a wide range of technologically important materials used for energy conversion and storage, optoelectronics, and beyond. The ability to remove the transducer after their use is a useful feature for measuring unreproducible or high-value samples, and for failure analysis and quality control of semiconductor chips.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
散热是从微电子和电力电子到能量存储设备和热电技术的固有技术。表征和理解热传输过程的能力可以帮助调节热量流动并提高设备功能、效率和稳定性,特别是对于由导热性较差的材料制成的设备。尽管如此,以高空间分辨率测量低导热率材料中的热传输仍然具有挑战性。这里提出了一种新方法,其中热流将由空间分辨率低至数百纳米的高速相机直接成像。所提出的方法是基于激光的,因此是非接触式的,并将利用有机半导体材料,有机半导体材料丰富且普遍用于有机发光二极管和显示器。有机半导体将充当下方材料的局部温度报告器,可以通过观察有机半导体的温度随时间变化的速度来评估其热导率。该项目将为研究生和本科生提供广泛的培训机会,帮助他们构建和修改具有高空间和时间分辨率的综合光学测量系统。来自当地公立高中的 K-12 学生将在最先进的热计量实验中获得了解和经验。缺陷、晶界以及其他类型的不均匀性是非单晶或外延膜材料的特征。为了了解此类缺陷对新兴能源相关材料中热传输的影响,该团队将探索有机半导体作为光学泵浦探针热反射测量的替代传感器。几种原型有机半导体的形貌、光学性质和热传输性质将在很宽的温度范围内得到彻底研究。同时,将构建时间分辨的宽视场光学成像装置,这将允许有机换能器的有效热激发及其以纳秒时间分辨率进行精确的温度监测。该团队将进行概念验证实验,对异质能源材料和原型二维铁磁材料中的热流进行时空成像。预计这里提出的替代换能器和成像技术可以补充现有的热反射技术,用于研究用于能量转换和存储、光电子学等的各种技术重要材料的热传输特性。使用后拆卸传感器的能力对于测量不可重现或高价值样品以及半导体芯片的故障分析和质量控制来说是一个有用的功能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peijun Guo其他文献
Coherent Vibrational Dynamics of Exciton Self-Trapping in Lead-Free Double Halide Perovskites
无铅双卤化物钙钛矿中激子自捕获的相干振动动力学
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Soumen Ghosh;P. Kabaciński;Hemen Hosseini;Shunran Li;F. V. Camargo;Peijun Guo;G. Cerullo - 通讯作者:
G. Cerullo
Epitaxial Atomic Layer Deposition of Sn-Doped Indium Oxide
掺锡氧化铟的外延原子层沉积
- DOI:
10.1021/acs.cgd.5b01086 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jonathan D Emery;C. Schlepütz;Peijun Guo;R. Chang;A. Martinson - 通讯作者:
A. Martinson
Theoretical and experimental manipulation of plasmon-polariton bandgaps at infrared frequencies in indium-tin-oxide nanorod arrays
氧化铟锡纳米棒阵列中红外频率等离激元极化带隙的理论和实验操纵
- DOI:
10.1109/ipcon.2016.7831263 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xiangfan Chen;Peijun Guo;B. Dong;Zhirou Zhang;R. Chang;Cheng Sun - 通讯作者:
Cheng Sun
Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening
通过界面增韧同时提高介观钙钛矿太阳能电池的效率和运行稳定性
- DOI:
10.1002/adma.202308819 - 发表时间:
2023 - 期刊:
- 影响因子:29.4
- 作者:
In Seok Yang;Zhenghong Dai;Anush Ranka;Du Chen;Kai Zhu;Joseph J. Berry;Peijun Guo;N. Padture - 通讯作者:
N. Padture
Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H2O Vapor Sorption.
多孔且水稳定的二维混合金属卤化物,具有宽广的发光和选择性 H2O 蒸气吸附。
- DOI:
10.1002/anie.202218429 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ali Azmy;Shunran Li;G. Angeli;Claire Welton;P. Raval;Min Li;N. Zibouche;L. Wojtas;G. N. M. Reddy;Peijun Guo;P. Trikalitis;I. Spanopoulos - 通讯作者:
I. Spanopoulos
Peijun Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peijun Guo', 18)}}的其他基金
Collaborative Research: Metasurface-Enabled Broadband Circular Dichroism Spectroscopy and Imaging
合作研究:超表面宽带圆二色光谱和成像
- 批准号:
2305138 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Standard Grant
Repurposing low-dimensional hybrid perovskites for the detection of low-energy photons
重新利用低维杂化钙钛矿来检测低能光子
- 批准号:
2313648 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Continuing Grant
相似国自然基金
基于光学阵列传感器的络合态重金属分析方法构建与应用
- 批准号:22306165
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有限宽谱波段星载传感器的全球陆地气溶胶光学厚度反演方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微流控纳米光学传感器及其在微生物感染诊断中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于即时检测多种食源性致病菌的适配体光学传感器
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波导微环的高灵敏度光纤端面集成光学超声传感器研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
- 批准号:
10649225 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Multiplex Ultrasound Imaging for the Detection of Head and Neck Lymph Node Micrometastases
用于检测头颈部淋巴结微转移的多重超声成像
- 批准号:
10870266 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Development of an Oscillated Insertion tool to Eliminate Surgically Induced Neurodegeneration for Optical Neuroimaging of Cognitive Aging and Dementia
开发振荡插入工具以消除手术引起的神经变性,用于认知衰老和痴呆的光学神经成像
- 批准号:
10792064 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Large-Scale Optical Ultrasound Transducer Arrays for High-Speed and High-Resolution 3D Acoustic Tomography
用于高速、高分辨率 3D 声学断层扫描的大型光学超声换能器阵列
- 批准号:
2330199 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Standard Grant
In vivo optical coherence elastography of the cornea: mapping shear and tensile moduli
角膜体内光学相干弹性成像:绘制剪切模量和拉伸模量
- 批准号:
10706960 - 财政年份:2022
- 资助金额:
$ 40.29万 - 项目类别: