ExpandQISE: Track 1: Energy Efficient Quantum Control of Robust Spin Ensemble Qubits (EQ2)

ExpandQISE:轨道 1:鲁棒自旋系综量子位的节能量子控制 (EQ2)

基本信息

  • 批准号:
    2231356
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical Description:An important problem in scalable quantum computing is to locally address qubits in an energy-efficient manner. Current approaches, for example, use microwaves at different frequencies conveyed through waveguides to address different qubits that are resonant to different frequencies. Such microwave fields consume significant energy and their confinement to the nanometer scale is challenging. This project will use voltage-control of nanoscale magnets for energy efficient and selective addressing of spin qubits with high spatial resolution and will be easy to integrate with existing foundry manufacturing processes. Thus, this project will synergistically bring together the fields of spintronics and quantum computing. The project team will create a vibrant Quantum Information Science and Engineering (QISE) program at Virginia Commonwealth University (VCU) and integrate this research with teaching and outreach to educate students in QISE at the graduate, undergraduate, and K-12 levels while leveraging existing QISE expertise at the University of California, Los Angeles (UCLA) through collaboration. Such activities include developing a new QISE course, lab modules, and K-12 outreach through workshops and summer internships for underrepresented students in QISE. Technical Description:This project will simulate and demonstrate highly localized control of qubits using nanomagnets driven by an electric field at the Larmor frequency of proximally located spin qubits to implement single-qubit quantum gates with state-of-the-art fidelities and high energy efficiency. Towards realizing the above research vision, the project will (1) simulate and experimentally demonstrate voltage control of nanoscale magnets using heterostructures to generate the desired magnetic field pulses locally in a confined nanoscale volume for high fidelity single spin qubit gates, (2) demonstrate that the voltage-controlled magnetization dynamics of such nanomagnets can control NV spin qubit centers in diamond with high fidelity that can be read optically, and (3) simulate the collective dynamics of mesoscopic spin ensembles comprising 10-100 spins (for an increased signal to noise ratio and possibly error correction through spin interaction to reduce dephasing) and demonstrate that voltage-controlled nanomagnets can control such an ensemble of spins with high fidelity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:可扩展量子计算中的一个重要问题是以节能的方式本地寻址量子位。例如,当前的方法使用通过波导传送的不同频率的微波来处理与不同频率谐振的不同量子位。这种微波场消耗大量能量,将其限制在纳米尺度具有挑战性。该项目将使用纳米级磁体的电压控制来实现高空间分辨率的自旋量子位的节能和选择性寻址,并且易于与现有的铸造制造工艺集成。因此,该项目将协同地将自旋电子学和量子计算领域结合在一起。该项目团队将在弗吉尼亚联邦大学 (VCU) 创建一个充满活力的量子信息科学与工程 (QISE) 项目,并将这项研究与教学和外展相结合,对研究生、本科生和 K-12 级别的学生进行 QISE 教育,同时利用现有的资源通过与加州大学洛杉矶分校 (UCLA) 合作获得 QISE 专业知识。此类活动包括开发新的 QISE 课程、实验室模块,以及通过研讨会和暑期实习为 QISE 中代表性不足的学生进行 K-12 外展。技术描述:该项目将使用由邻近自旋量子位的拉莫尔频率的电场驱动的纳米磁体来模拟和演示对量子位的高度局部控制,以实现具有最先进保真度和高能效的单量子位量子门。 为了实现上述研究愿景,该项目将 (1) 模拟并实验演示使用异质结构对纳米级磁体进行电压控制,以在有限的纳米级体积中局部生成所需的磁场脉冲,以实现高保真单自旋量子位门,(2) 证明这种纳米磁体的电压控制磁化动力学可以以高保真度控制金刚石中的 NV 自旋量子位中心,并且可以光学读取,并且(3)模拟介观自旋系综的集体动力学包括 10-100 个自旋(用于提高信噪比,并可能通过自旋相互作用进行纠错以减少失相),并证明压控纳米磁体可以高保真度地控制这样的自旋集合。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum control of spin qubits using nanomagnets
使用纳米磁体对自旋量子位进行量子控制
  • DOI:
    10.1038/s42005-022-01041-8
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Niknam, Mohamad;Chowdhury, Md. Fahim F.;Rajib, Md Mahadi;Misba, Walid Al;Schwartz, Robert N.;Wang, Kang L.;Atulasimha, Jayasimha;Bouchard, Louis
  • 通讯作者:
    Bouchard, Louis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayasimha Atulasimha其他文献

Correction: A 3-D NanoMagnetoElectrokinetic model for ultra-high precision assembly of ferromagnetic NWs using magnetic-field assisted dielectrophoresis
  • DOI:
    10.1039/d0ra90121k
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sachin K. Singh;Md Mahadi Rajib;Justine L. Drobitch;Jayasimha Atulasimha;Supriyo Bandyopadhyay;Arunkumar Subramanian
  • 通讯作者:
    Arunkumar Subramanian
A 3-D NanoMagnetoElectrokinetic model for ultra-high precision assembly of ferromagnetic NWs using magnetic-field assisted dielectrophoresis
  • DOI:
    10.1039/d0ra08381j
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sachin K. Singh;Md Mahadi Rajib;Justine L. Drobitch;Jayasimha Atulasimha;Supriyo Bandyopadhyay;Arunkumar Subramanian
  • 通讯作者:
    Arunkumar Subramanian
Magnetic behavior of superatomic-fullerene assemblies
  • DOI:
    10.1039/c6cp05196k
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Pallabi Sutradhar;Vikas Chauhan;Shiv N. Khanna;Jayasimha Atulasimha
  • 通讯作者:
    Jayasimha Atulasimha

Jayasimha Atulasimha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayasimha Atulasimha', 18)}}的其他基金

ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152601
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Magneto Optic Kerr Effect (MOKE) Microscope for Research and Teaching
MRI:购买磁光克尔效应 (MOKE) 显微镜用于研究和教学
  • 批准号:
    2117646
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Efficient Voltage Controlled Non-volatile Domain Wall Devices for Neural Networks
合作研究:用于神经网络的节能压控非易失性畴壁器件
  • 批准号:
    1954589
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Skyrmion Mediated Eenergy-efficient VCMA Switching of 2-Terminal p-MTJ Memory
SHF:小型:合作研究:Skyrmion 介导的 2 端 p-MTJ 存储器的节能 VCMA 切换
  • 批准号:
    1909030
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Energy Efficient Strain Assisted Spin Transfer Torque Memory
SHF:小型:合作研究:节能应变辅助自旋转移扭矩存储器
  • 批准号:
    1815033
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
CAREER: Reliable and Fault Tolerant Super Energy Efficient Nanomagnetic Computing in the Presence of Thermal Noise
职业:存在热噪声时可靠且容错的超能效纳米磁计算
  • 批准号:
    1253370
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Ultra-Low Power and Ultra-Sensitive Spintronic Nanowire Strain Sensor
超低功耗、超灵敏自旋电子纳米线应变传感器
  • 批准号:
    1301013
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SHF: Small: Pipelined and wireless ultra-low power straintronics: An acoustically clocked combinational and sequential nanomagnetic architecture
SHF:小型:管道式和无线超低功耗应变电子学:声学时钟组合和顺序纳米磁性架构
  • 批准号:
    1216614
  • 财政年份:
    2012
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
  • 批准号:
    12301393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Global Centers Track 2: Equitable and User-Centric Energy Market for Resilient Grid-interactive Communities
全球中心轨道 2:面向弹性电网互动社区的公平且以用户为中心的能源市场
  • 批准号:
    2330504
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了