Microauscultation devices via acoustic coupling with near-field light-matter interactions

通过声耦合与近场光物质相互作用的微听诊装置

基本信息

  • 批准号:
    2314118
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Sound waves are crucial in communication and imaging, including medical ultrasound, sonar, and seismography. Auscultation—listening to the sounds of the body—is one of the first things a physician does to assess the health of a patient. Heart activity, blood flow, and pulmonary gas exchange all have unique sounds that to a trained physician’s ear can be used to quickly identify problems in bodily functions. It is also conceivable that cells, bacteria, and viruses all generate distinct acoustic signals. Being able to eavesdrop on this acoustic world would not only be a significant scientific breakthrough but would also transform our ability to monitor our health, diagnose disease, particularly at an early stage, and help answer fundamental biological questions. However, detecting the subtle acoustic signatures from small biological objects while surrounded by a cacophony of other sounds will require a new approach to listening: devices that can approach the size of the sound source, have exceptional sensitivity over a broad range of acoustic frequencies, and have a strong directional and distance-limited sensory capability. Current mechanoelectrical stethoscopes and hydrophones are not engineered to push the limits of auscultation nor be scaled down to operate extremely close to acoustic sources. To address these shortcomings, this proposal seeks to engineer small nanoscale fiber optics that can efficiently convert weak sound waves into an optical signal that can be measured with a photodetector or camera. The working principle of the design involves metal nanoparticles decorating a soft polymer coating that moves in response to extremely low amplitude sound waves, creating a modulated optical signal unique to the detected acoustic signature. This project will have a major impact on student learning, achievement, diversity, and inclusion. For example, “Summer of Nano” workshops will be developed to increase underrepresented minority student enrollment numbers in STEM degree programs at UC San Diego, and other higher education institutes, by galvanizing cross-border relationships between UC San Diego and Mexico as well as local San Diego high schools. Through teaching about how diverse, cross-disciplinary science can be used to accelerate scientific discovery and innovation, this project will also be pivotal in recruiting and retaining underrepresented minority students in engineering degree programs at UCSD.This proposal aims to design, fabricate, and evaluate acoustic-to-optical nanoscale transducers that leverage strong near-field plasmon-dielectric coupling effects to detect and interpret sound signatures never heard before by other local nano-ears. Impedance-optimized acousto-compressible polymer nanofiber cladding layers will be synthesized that enable strong, acoustic modulation of plasmonic nanoparticles embedded in, or attached to, the polymer layer. It will be demonstrated that these cladding layers can be tuned to be modulated by weak sound waves in the optical near field with a broad range of frequencies and amplitudes. Through laser Doppler vibrometry and high-speed digital holographic microscopy, the acoustic resonance and response of the plasmomechanical transduction mechanism will be fully correlated to the cladding deformation studies, providing a deep understanding of how to leverage various parameters (light wavelength, nanoparticle size/shape, polymer composition/thickness, etc.) to control the performance and response of the nanofiber microauscultation devices. The directional response pattern and frequency-dependent sensitivity will be quantified using custom lithium niobate transducers, which will help fill the intellectual gap on how the acoustic near field couples to the far field, and it will be demonstrated that the nanofiber microauscultation devices are sensitive enough to detect and transduce acoustic signatures from nanobiomechanical systems (e.g., genome ejection from viral capsids) for the first time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
声波对于沟通和成像至关重要,包括医学超声,声纳和地震学。听诊 - 倾向于身体的声音 - 是物理上为评估患者健康而做的第一件事。心脏活动,血流和肺气交换都具有独特的声音,可以使用训练有素的物理耳朵来快速识别身体功能的问题。还可以想象细胞,细菌和病毒都会产生不同的声学信号。能够在这个声学世界上窃听不仅是一个重大的科学突破,而且还将改变我们监测健康,诊断疾病的能力,尤其是在早期阶段,并有助于回答基本的生物学问题。但是,在通过其他声音的刺耳围绕围绕小型生物对象的微妙的声学特征将需要一种新的聆听方法:可以接近声源的设备,在众多的声学频率上具有出色的灵敏度,并且具有强大的方向性和距离的感觉能力。当前的机械电气听诊器和氢气不是为了推动听诊的限制而设计的,也不会缩放以使其非常接近声学源。为了解决这些缺点,该建议旨在设计小纳米级光纤,该光学元件可以有效地将弱的声波转换为可以用光电探测器或相机测量的光学信号。设计的工作原理涉及金属纳米颗粒装饰软聚合物涂层,该涂层响应于极低的放大器声波而移动,从而形成了检测到的声学签名独特的调制光信号。该项目将对学生学习,成就,多样性和包容性产生重大影响。例如,将开发“ Nano of Nano”研讨会,以增加分校圣地亚哥的STEM学位课程中代表性不足的少数族裔学生入学人数,以及其他高等教育机构,通过激发加州大学圣地亚哥和墨西哥和墨西哥以及当地圣地亚哥高中之间的跨境关系。 Through teaching about how divers, cross-disciplinary science can be used to accelerate scientific discovery and innovation, this project will also be pivotal in recruiting and retaining underrepresented minority Students in engineering degree programs at UCSD.This proposal aims to design, fabricate, and evaluate acoustic-to-optical nanoscale transducers that leverage strong near-field plasmon-dielectric coupling effects to detect and interpret其他当地纳米耳朵从未听说过的声音签名。将合成阻抗优化的原声可压缩聚合物纳米构纤维覆盖层,该层能够对嵌入或附着在聚合物层中的或附着的等离子纳米颗粒的强,声学调节。可以证明,可以调节这些覆层的层,以通过具有广泛频率和放大器的光学近场中的弱声波调节。 Through laser Doppler vibration and high-speed digital holographic microscopy, the acoustic resonance and response of the plasmamechanical transduction mechanism will be fully correlated to the cladding deformation studies, providing a deep understanding of how to leverage various parameters (light wavelength, nanoparticle size/shape, polymer composition/thickness, etc.) to control the performance and response of the nanofiber微型培养设备。将使用自定义的尼橡胶透射仪来量化定向的响应模式和频率依赖性敏感性,这将有助于填补有关智力差异如何到远处的智力差距,并且将证明纳米纤维微培养设备足以检测和翻译来自Nananobiomiy的机能(nananobiomymiy e.gomomy e.gomomiage)( Capsids)首次反映了NSF的法定任务,并通过评估使用基金会的知识分子优点和更广泛的影响评估标准,被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Sirbuly其他文献

Donald Sirbuly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Sirbuly', 18)}}的其他基金

CAREER: Single element nanophotonic force transducers using subwavelength optical waveguides
职业:使用亚波长光波导的单元件纳米光子力传感器
  • 批准号:
    1150952
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

互联多设备跨屏显控的个体行为特性与注意机制研究
  • 批准号:
    72371033
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
南海热带气旋激发大气重力波特性的多设备观测研究
  • 批准号:
    42364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
数据驱动的多部件随机退化设备剩余寿命预测方法研究
  • 批准号:
    62373369
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向实际应用的测量设备无关类量子密钥分发协议研究
  • 批准号:
    62371244
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
面向数据不均衡的光网络设备故障智能诊断及可解释性研究
  • 批准号:
    62301061
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy
博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件
  • 批准号:
    2401024
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
  • 批准号:
    10735637
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Non-invasive detection of tumor NTRK gene fusions via rapid, efficient and low-cost extracellular vesicle isolation method
快速、高效、低成本的细胞外囊泡分离方法无创检测肿瘤NTRK基因融合体
  • 批准号:
    10707684
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了