Center of All-Solid-State Batteries for a Clean Energy Society
清洁能源社会全固态电池中心
基本信息
- 批准号:2230770
- 负责人:
- 金额:$ 149.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Part 1, non-technicalReducing greenhouse gas emissions is critical to address the grand challenge of climate change. Renewable energy integration and vehicle electrification, keys to reducing greenhouse gas emissions, require energy storage at scale with safety and low cost. This PIRE team will conduct fundamental research to advance science and technology of all-solid-state batteries (ASSBs), which have the potential to transform rechargeable batteries for vehicle electrification and integration of renewable energy by offering next-generation energy storage devices with higher specific energy at both battery-cell and battery-pack levels, longer cycle life, lower cost and superior safety compared to Li-ion batteries (LIBs). The anticipated economic benefit (reduction in the cost of battery packs on the energy base by 50% over LIBs) along with unprecedented electrochemical performance (150% increase in the specific energy) and intrinsic safety will usher in a new era of vehicle electrification and renewable energy integration for a sustainable society with clean energy. By working with international partners from 7 institutions in Europe, the researchers will achieve the challenging goal of advancing science and technology in ASSBs. Through collaboration with industrial partners, the research team will expedite technology translation from laboratory discovery to commercial products. Further, they will collaborate with several minority-serving elementary, middle and high schools in Chicago to inspire underrepresented minority students to pursue STEM education and career. By working with City of Chicago, the researchers will launch a workforce development program, offering short courses and workshops to mid-career employees and underrepresented minorities, which can accelerate transition of the workforce into clean energy, electric vehicle, and energy storage industries.Part 2, technicalTo address the multi-faceted challenges faced by ASSBs, the PIs have assembled a multi-disciplinary team and will work with international partners with synergistic expertise, particularly with Prof. Braga at University of Porto, Portugal – the inventor of a new solid Li-glass electrolyte with ultrahigh ionic conductivity at room temperature ( 10-2 S/cm), wide electrochemical window (stable with Li metal and resistant to oxidation up to 8 V vs. Li/Li+), and low glass transition temperature (~75oC). The team will investigate and integrate conventional and unconventional charge storage mechanisms to achieve ultrahigh specific energy, high power, long cycle life ASSBs with intrinsic safety. Anode-free cells with Li plating/stripping at both anode and cathode enabled by Li-glass electrolyte will be studied for the first time. The electrochemical principles for such Li plating/stripping cells and those for anode-free cells with Li plating/stripping at the anode and de/intercalation at the cathode will be established to offer guidelines for design of ASSBs with unprecedented specific energies. In-situ and ex-situ characterizations will be performed to unravel the underlying mechanisms controlling interfacial properties of ASSBs. Density functional theory calculations, molecular dynamics and continuum models will be used and integrated to address the multi-length scale modeling from the electrode/electrolyte interface to single particle, multiple particles, and eventually to cell-level responses. The atomic level, sub-continuum level and cell-level understandings developed from these modeling efforts will assist the fundamental understanding of chemical/electrochemical stability between the electrode and Li-glass electrolyte, mechanical contact, Li plating/stripping, Li dendrite formation, ionic transport, and degradation physics of ASSBs. Through these scientific advancements, this PIRE project will lay a solid foundation for design, synthesis and fabrication of high-performance ASSBs at scale in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分,非技术性减少温室气体排放对于应对气候变化的重大挑战至关重要。可再生能源整合和车辆电气化是减少温室气体排放的关键,需要安全且低成本的大规模储能。推进全固态电池(ASSB)科学和技术的基础研究,通过提供具有更高比能量的下一代储能设备,有潜力将可充电电池转变为汽车电气化和可再生能源整合与锂离子电池 (LIB) 相比,电池组和电池组水平更高,循环寿命更长,成本更低,安全性更高。 预期经济效益(电池组的能源成本比锂离子电池降低 50%)。凭借前所未有的电化学性能(比能量提高 150%)和本质安全性,将开创汽车电气化和可再生能源集成的新时代,通过与欧洲 7 个机构的国际合作伙伴合作,打造可持续发展的社会。研究人员将通过与工业合作伙伴合作,实现推动 ASSB 科学技术的挑战性目标,研究团队将加快从实验室发现到商业产品的技术转化。此外,他们还将与芝加哥的几所少数族裔服务的小学、初中和高中合作。通过与芝加哥市合作,研究人员将启动劳动力发展计划,为职业生涯中期员工和代表性不足的少数族裔提供短期课程和研讨会,以激励代表性不足的少数族裔学生接受 STEM 教育和职业生涯,从而加速劳动力向职业转型。清洁能源、电动汽车、第 2 部分,技术为了解决 ASSB 面临的多方面挑战,PI 组建了一个多学科团队,并将与具有协同专业知识的国际合作伙伴合作,特别是与葡萄牙波尔图大学的 Braga 教授合作 –新型固体锂玻璃电解质的发明者,该电解质在室温下具有超高离子电导率(10-2 S/cm)、宽电化学窗口(与锂金属稳定且抗氧化高达 8 V)该团队将研究并整合传统和非常规的电荷存储机制,以实现超高比能量、高功率、长循环寿命且具有本质安全性的ASSB。将首次研究由锂玻璃电解质实现的阳极和阴极镀锂/剥离电池以及无阳极锂电池的电化学原理。将建立阳极电镀/剥离和阴极脱嵌/嵌入的方法,为具有前所未有的特定能量的ASSB设计提供指导,并将进行原位和异位表征,以揭示控制ASSB界面特性的潜在机制。将使用并集成密度泛函理论计算、分子动力学和连续介质模型来解决从电极/电解质界面到单颗粒、多颗粒并最终到多长度尺度建模的问题。从这些建模工作中开发出的原子级、亚连续体级和细胞级响应将有助于对电极和锂玻璃电解质之间的化学/电化学稳定性、机械接触、锂电镀/剥离、通过这些科学进步,该 PIRE 项目将为未来大规模设计、合成和制造高性能 ASSB 奠定坚实的基础。该奖项反映了 ASSB 的锂枝晶形成、离子传输和降解物理。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leon Shaw其他文献
Enhancement in Ti–6Al–4V sintering via nanostructured powder and spark plasma sintering
通过纳米结构粉末和放电等离子烧结增强 Ti-6Al-4V 烧结
- DOI:
10.1179/1743290113y.0000000082 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:1.4
- 作者:
Kyle Crosby;Leon Shaw;C. Estournès;G. Chevallier;Arne Woolsey Fliflet;M. Imam - 通讯作者:
M. Imam
Mechanism of hydrogen storage on Fe3B
- DOI:
10.1039/d0cc03741a - 发表时间:
2020-10 - 期刊:
- 影响因子:4.9
- 作者:
Zhao Ding;Hao Li;Ge Yan;Weijie Yang;Zhengyang Gao;Wenhui Ma;Leon Shaw - 通讯作者:
Leon Shaw
Leon Shaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leon Shaw', 18)}}的其他基金
I-Corps: Silicon(Si)-based Rechargeable Batteries
I-Corps:硅 (Si) 基可充电电池
- 批准号:
1922937 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
I-Corps: Silicon(Si)-based Rechargeable Batteries
I-Corps:硅 (Si) 基可充电电池
- 批准号:
1922937 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
PFI-TT: Rechargeable Batteries with Ultrafast Charging Capability and Long Usage Time per Charge
PFI-TT:具有超快充电能力和每次充电使用时间长的充电电池
- 批准号:
1918991 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Hierarchical Silicon/Carbon Nanocomposite Anodes for Next Generation Batteries
用于下一代电池的分层硅/碳纳米复合阳极的可扩展制造
- 批准号:
1660572 - 财政年份:2017
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Mechanical Activation Enhanced Solid-State Reaction and Electrochemical Properties of NaCrO2
NaCrO2 的机械活化增强固相反应及电化学性能
- 批准号:
1709959 - 财政年份:2017
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
PFI:AIR-TT: WC/Co Materials with High Hardness and Toughness Simultaneously Enabled by the WC Platelet Microstructure
PFI:AIR-TT:WC片状微观结构同时具有高硬度和韧性的WC/Co材料
- 批准号:
1414021 - 财政年份:2014
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Multi-Material, Multi-Layer Devices Enabled by High Aspect Ratio Micro-Extrusion
高纵横比微挤压实现多材料、多层器件
- 批准号:
1331735 - 财政年份:2013
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
- 批准号:
1261782 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
US Egypt Cooperative Research: Si3N4/SiC Nanocomposites Synthesized from Waste Silica Fume for High Temperature Structural Applications
美埃合作研究:利用废硅粉合成Si3N4/SiC纳米复合材料用于高温结构应用
- 批准号:
1266075 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
- 批准号:
1228888 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
相似国自然基金
坚硬岩层破断诱发巷道冲击地压模拟的连续-非连续方法研究及应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
基于中厚板理论的坚硬厚顶板破断致灾机制与控制准则
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
裂隙性坚硬隧道围岩的岩爆机理及强度模型研究
- 批准号:51808458
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
压裂-采动效应对坚硬顶板损伤及瓦斯运移的影响机理
- 批准号:51804058
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
3D打印栅格状胎体刀刃化唇面对金刚石钻头破碎坚硬岩层的影响机制研究
- 批准号:41872186
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms and vulnerabilities of ERG-driven luminal fate in prostate cancer
前列腺癌中 ERG 驱动的管腔命运的机制和脆弱性
- 批准号:
10572836 - 财政年份:2023
- 资助金额:
$ 149.99万 - 项目类别:
Characterizing stem cell-like B cell subpopulations and dissecting their role in tumorigenesis
表征干细胞样 B 细胞亚群并剖析它们在肿瘤发生中的作用
- 批准号:
10720153 - 财政年份:2023
- 资助金额:
$ 149.99万 - 项目类别:
Multimodal Marker for imaging oximetry in radiotherapy
用于放射治疗中成像血氧测定的多模态标记物
- 批准号:
10818101 - 财政年份:2023
- 资助金额:
$ 149.99万 - 项目类别:
ShEEP Request for iNSCOPIX nVue System
SheEEP 对 iNSCOPIX nVue 系统的请求
- 批准号:
10534510 - 财政年份:2022
- 资助金额:
$ 149.99万 - 项目类别:
Develop a novel phase-change water/fluid purification technology that uses a NASA-validated vapor compression distillation (VCD)
开发一种新型相变水/流体净化技术,该技术使用经 NASA 验证的蒸气压缩蒸馏 (VCD)
- 批准号:
10384223 - 财政年份:2022
- 资助金额:
$ 149.99万 - 项目类别: