Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce

协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程

基本信息

项目摘要

Artificial Intelligence (AI) and Machine Learning (ML) techniques can bolster cybersecurity by aiding security administrators in detecting suspicious behaviors and initiating responses to threats. However, AL/ML technology remains susceptible to malicious exploitation, potentially leading to unintended outcomes. Therefore, it is important to ensure that AI-based decision processes are reliable in critical operational systems when facing adversarial situations. As deep learning (DL) and other AI/ML algorithms become integrated into operational systems, it is essential to defend security, privacy, and fairness of AI/ML against adversaries. This can be achieved by implementing more robust ML methods such as AI reconnaissance prevention, analysis of adversarial models, model poisoning prevention, and secure training procedures. By equipping students with the knowledge needed to secure AI in malware analysis applications, this project will foster growth of next-generation cybersecurity talent. This project will research and develop self-contained course modules focused on Adversarial Machine Learning (AML) within the context of malware analysis applications, which will transit cutting-edge research topics into the teaching and learning process. The goal of these modules is to develop students at Tennessee Tech University (TTU) and North Carolina Agricultural and Technical State University (NCAT) with specialized knowledge in this area. Course modules will include adversarial malware generation, robustness of file structure against random perturbation, poisoning attack and defense, white-box evasion attack, and surrogate model construction. The AML cyber modules will be integrated into different non-security courses such as AI/ML or data science or provided as an independent cybersecurity course. Students will acquire practical and conceptual knowledge by engaging with different AI/ML techniques for security solutions pertinent to the malware analysis domain. Additionally, students will develop advanced skills necessary for safeguarding AI systems. The interdisciplinary team, composed of experts in cybersecurity, artificial intelligence, and education, will utilize a guiding conceptual framework to strategically develop cybersecurity education modules. They will investigate the impact of these modules on learning outcomes, while refining pedagogical strategies to promote diversity and inclusion in cybersecurity education. Developed modules, instructional materials, and tutorial activities will be widely available for dissemination. This project will support integration of security and education research topics to create new knowledge in cybersecurity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 和机器学习 (ML) 技术可以帮助安全管理员检测可疑行为并启动对威胁的响应,从而增强网络安全。然而,AL/ML 技术仍然容易受到恶意利用,可能导致意外结果。因此,在面临对抗性情况时,确保关键操作系统中基于人工智能的决策过程的可靠性非常重要。随着深度学习 (DL) 和其他 AI/ML 算法集成到操作系统中,保护 AI/ML 的安全性、隐私性和公平性免受对手攻击至关重要。这可以通过实施更强大的机器学习方法来实现,例如人工智能侦察预防、对抗模型分析、模型中毒预防和安全训练程序。通过为学生提供在恶意软件分析应用程序中保护人工智能所需的知识,该项目将促进下一代网络安全人才的成长。该项目将研究和开发独立的课程模块,重点关注恶意软件分析应用背景下的对抗性机器学习(AML),这将把前沿研究主题转移到教学过程中。这些模块的目标是培养田纳西理工大学 (TTU) 和北卡罗来纳州立农业技术大学 (NCAT) 的学生掌握该领域的专业知识。课程模块将包括对抗性恶意软件生成、文件结构对抗随机扰动的鲁棒性、中毒攻击和防御、白盒规避攻击和代理模型构建。 AML 网络模块将集成到不同的非安全课程中,例如人工智能/机器学习或数据科学,或作为独立的网络安全课程提供。学生将通过使用不同的 AI/ML 技术来获得与恶意软件分析领域相关的安全解决方案的实践和概念知识。此外,学生还将培养保护人工智能系统所需的高级技能。该跨学科团队由网络安全、人工智能和教育领域的专家组成,将利用指导概念框架战略性地开发网络安全教育模块。他们将调查这些模块对学习成果的影响,同时完善教学策略以促进网络安全教育的多样性和包容性。开发的模块、教学材料和辅导活动将广泛传播。该项目将支持安全和教育研究主题的整合,以创造网络安全方面的新知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahmoud Abdelsalam其他文献

SoK: Leveraging Transformers for Malware Analysis
SoK:利用 Transformers 进行恶意软件分析
  • DOI:
    10.48550/arxiv.2405.17190
  • 发表时间:
    2024-05-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pradip Kunwar;Kshitiz Aryal;Maanak Gupta;Mahmoud Abdelsalam;Elisa Bertino
  • 通讯作者:
    Elisa Bertino
Pre-transplant 18F-fluorodeoxyglucose positron emission tomography-based survival model in patients with aggressive lymphoma undergoing high-dose chemotherapy and autologous SCT
基于 18F-氟脱氧葡萄糖正电子发射断层扫描的移植前侵袭性淋巴瘤患者接受大剂量化疗和自体 SCT 的生存模型
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    S. Akhtar;A. Al;M. Abouzied;Y. AlKadhi;M. Dingle;Mahmoud Abdelsalam;H. Soudy;A. Darwish;A. Eltigani;T. Elhassan;M. Nabil;I. Maghfoor
  • 通讯作者:
    I. Maghfoor
Malware Detection in Cloud Infrastructures Using Convolutional Neural Networks
使用卷积神经网络检测云基础设施中的恶意软件
Knowledge Enrichment by Fusing Representations for Malware Threat Intelligence and Behavior
通过融合恶意软件威胁情报和行为的表示来丰富知识
Machine Learning in Access Control: A Taxonomy and Survey
访问控制中的机器学习:分类和调查
  • DOI:
    10.48550/arxiv.2207.01739
  • 发表时间:
    2022-07-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. N. Nobi;Maanak Gupta;Lopamudra Praharaj;Mahmoud Abdelsalam;R. Krishnan;R. S;hu;hu
  • 通讯作者:
    hu

Mahmoud Abdelsalam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mahmoud Abdelsalam', 18)}}的其他基金

Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
  • 批准号:
    2150297
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
  • 批准号:
    2025686
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了