Collaborative Research: SWIFT: SCISRS: Signal Cancellation using Intelligent Surfaces for Radio Astronomy Services
合作研究:SWIFT:SCISRS:使用智能表面进行射电天文学服务的信号消除
基本信息
- 批准号:2229496
- 负责人:
- 金额:$ 63.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates use of a reconfigurable intelligent surface (RIS) installed near a radio telescope to help mitigate radio frequency interference (RFI) from other users of the electromagnetic spectrum. The RIS reflects incoming RFI signals towards the telescope in such a way that the reflected RFI cancels out the direct RFI when the two signals combine in the telescope receiver. Better capability to observe in commercial wireless bands and in other bands with active usage, not just in bands reserved for science, will enhance the fidelity of astronomical measurements. Also, the formerly remote locations where radio telescopes were built are experiencing ongoing increases in population density, increased numbers of low earth orbiting satellites, and other effects that increase RFI over time. Improving the ability to remove RFI from astronomical observations helps preserve the value of the investment in these expensive instruments and helps ensure their continued scientific capability. The platform and tools developed in this project will be incorporated into graduate and undergraduate courses at UAlbany as well as a summer school at OVRO. Wireless signals and other datasets captured from the testbed will be made available to the larger community to foster practical research in this field.The primary technical objectives of this project are to accurately estimate the RFI incident at the telescope and to configure the RIS so the reflected signal arriving at the telescope receiver precisely cancels the incident RFI. Cancellation requires control over both amplitude and phase of the reflected signal, which is achieved by tuning the reflecting elements of the intelligent surface. A key challenge tackled in the research is to cancel mobile RFI sources such as airplanes and satellites. Mobile sources stress the ability of the RIS controller to keep up with changes in the direction of RFI and the controller’s ability to keep the surface tuned precisely enough to cancel the RFI. The project combines three areas of innovation to overcome this challenge. At the system level, the RIS controller uses feedback from the telescope, which continually reports the residual RFI it sees, to compensate for estimation errors. At the algorithm level, a novel, low-complexity multi-stage direction of arrival estimation method is combined with an adaptive beamforming algorithm that shapes and steers the reflected RFI. At the hardware level, a 16-channel high-speed processing platform built from Field Programmable Gate Arrays is coupled with a custom fabricated RIS to enable real time RFI estimation and adaptive beamforming. The project will construct an experimental radio telescope at University at Albany, SUNY (UAlbany) based on the Small Radio Telescope (SRT) design from MIT Haystack Observatory. The cancellation approach will be tested on the UAlbany SRT and on one antenna of the large DSA-110 telescope array at the Owens Valley Radio Observatory (OVRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究使用安装在射电望远镜附近的可重构智能表面 (RIS),以帮助减轻来自电磁频谱其他用户的射频干扰 (RFI)。RIS 向望远镜反射传入的 RFI 信号,反射的方式如下。当两个信号在望远镜接收器中结合时,RFI 可以消除直接 RFI,从而能够更好地在商业无线频段和其他活跃使用的频段(而不仅仅是为科学保留的频段)进行观测,从而提高天文观测的保真度。此外,以前建造射电望远镜的偏远地区正在经历人口密度的不断增加、近地轨道卫星数量的增加以及随着时间的推移而增加射频干扰的其他影响,提高从天文观测中消除射频干扰的能力有助于保护射频干扰。这些昂贵仪器的投资价值,并有助于确保其持续的科学能力,该项目开发的平台和工具将被纳入 UAlbany 的研究生和本科生课程以及 OVRO 的暑期学校无线信号和其他数据集。这测试平台将提供给更大的社区,以促进该领域的实际研究。该项目的主要技术目标是准确估计望远镜处的 RFI 事件并配置 RIS,以便到达望远镜接收器的反射信号精确抵消消除事件 RFI 需要控制反射信号的幅度和相位,这是通过调整智能表面的反射元件来实现的。研究中解决的一个关键挑战是消除移动 RFI 源,例如飞机和卫星。消息来源强调的能力RIS 控制器能够跟上 RFI 方向的变化,并且控制器能够保持足够精确的表面调谐以消除 RFI。该项目结合了三个领域的创新来克服这一挑战。望远镜的反馈不断报告其看到的残余 RFI,以补偿估计误差。在算法层面,一种新颖的、低复杂度的多级到达方向估计方法与整形和引导的自适应波束形成算法相结合。反射的 RFI。在硬件层面,由现场可编程门阵列构建的 16 通道高速处理平台与定制的 RIS 相结合,以实现实时 RFI 估计和自适应波束形成。该项目将在奥尔巴尼大学建造一座实验射电望远镜。纽约州立大学(UAlbany)基于麻省理工学院海斯塔克天文台的小型射电望远镜(SRT)设计,将在 UAlbany SRT 和大型射电望远镜的一根天线上进行测试。欧文斯谷射电天文台 (OVRO) 的 DSA-110 望远镜阵列。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SCISRS: Signal Cancellation using Intelligent Surfaces for Radio Astronomy Services
SCISRS:使用智能表面进行射电天文学服务的信号消除
- DOI:10.1109/globecom48099.2022.10001662
- 发表时间:2022-12-04
- 期刊:
- 影响因子:0
- 作者:Zhibin Zou;Xue Wei;D. Saha;Aveek Dutta;G. Hellbourg
- 通讯作者:G. Hellbourg
Multistage 2D DoA Estimation in Low SNR
- DOI:10.1109/icc45041.2023.10279283
- 发表时间:2023-05-28
- 期刊:
- 影响因子:0
- 作者:Xue Wei;D. Saha;Gregory Hellbourg;Aveek Dutta
- 通讯作者:Aveek Dutta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dola Saha其他文献
: Waveform Independent Signal Embedding for Covert Communication
:用于隐蔽通信的波形独立信号嵌入
- DOI:
10.1109/tmlcn.2023.3343326 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Xue Wei;Dola Saha - 通讯作者:
Dola Saha
DetecSHUN: Detection of Signals Hidden Under the Noise
DetecSHUN:检测隐藏在噪声下的信号
- DOI:
10.1145/3649403.3656488 - 发表时间:
2024-05-27 - 期刊:
- 影响因子:0
- 作者:
Nathaniel Rowe;Dola Saha - 通讯作者:
Dola Saha
Potato Leaf Disease Detection Using MultiNet: A Deep Neural Network with Multi-Scale Feature Fusion
使用 MultiNet 进行马铃薯叶病检测:具有多尺度特征融合的深度神经网络
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Md. Rezaul Islam;Dola Saha;Sumsun Nahar - 通讯作者:
Sumsun Nahar
Dola Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dola Saha', 18)}}的其他基金
CRI: II-NEW: CHRONOS : A Cloud based Hybrid RF-Optical Network Over Synchronous Links
CRI:II-新:CHRONOS:基于同步链路的云混合射频光网络
- 批准号:
1823225 - 财政年份:2018
- 资助金额:
$ 63.48万 - 项目类别:
Standard Grant
相似国自然基金
基于电卡效应的迅速冷热响应驱动双向形状记忆材料与结构研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
国际货币体系现状分析与未来展望:基于货币搜索理论和SWIFT数据的研究
- 批准号:72003209
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
迅速冷却等离子体射流中粒子形成过程的实验研究
- 批准号:11975185
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
草莓通过花瓣迅速脱落逃避灰葡萄孢侵染的机制研究
- 批准号:31701882
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
伯谢克辛甜瓜果肉迅速软化机理研究
- 批准号:31660464
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 63.48万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 63.48万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 63.48万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 63.48万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 63.48万 - 项目类别:
Standard Grant