Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials

合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式

基本信息

  • 批准号:
    2311698
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract Soft materials are ubiquitous in nature (plants, tissue, foods) and are also of interest for advanced engineering applications (implantable medical devices, etc.). Soft materials are incredibly versatile, particularly polymer networks and gels, as they can be engineered to be compatible with complex environments (biological systems, tissues, aqueous environments, etc.). While it is well known that soft materials can withstand larger deformations than brittle plastics or metals, they still suffer from sudden and catastrophic failure, such as a rapidly forming crack spanning the entire material nearly instantaneously. This limits the potential of soft materials, as engineered materials are typically designed to avoid or eliminate the likelihood of catastrophic failure events. While fundamental relationships between geometry and failure mode have been explored in traditional elastic solids, limited work has been done to establish similar design principles for soft materials. Therefore, understanding how to tailor the failure response of soft materials, particularly prior to use, is essential. This project addresses this gap by investigating how the geometry (e.g., lattice pattern), as well as the presence of inclusions (e.g., filled-in domains within a lattice structure) influence the failure mode of soft materials, mainly polymer gels. Furthermore, this project provides unique training opportunities for students from varied disciplines (materials science, physics, and civil engineering) by enabling them to work together collaboratively and participate in research exchanges between the two institutions. These exchanges provide students with the opportunity to engage in a discipline and department outside of their own to enhance their training, broaden their professional scientific network, and establish themselves as members of the STEM workforce.Technical Abstract Composite materials, such as perforated structures or structures with embedded domains, offer exceptional freedom to alter material properties such as stiffness, toughness, and failure mode. For example, the failure mode of a plastic lattice subjected to strain can be tailored via geometry; thinner struts afford slow and diffuse failure. While this type of relationship between geometry and failure mode has been explored in traditional elastic solids, limited work has been done to establish similar design principles for soft materials. This project addresses this gap by investigating how the geometry of a lattice structure, as well as engineered inclusions, influence the failure mode of soft materials (polymer gels). This study uses a combined experimental and computational approach to systematically address a large parameter space for this material system, including lattice geometry, gel stiffness, and the differential in mechanical properties between the lattice structure and engineered inclusions. In this project, samples are fabricated using photo-lithography techniques, and photoelastic imaging will be used to establish the relationship between stress transmission and failure mode. The photoelastic imaging informs computational models using the eXtended Finite Element Method (XFEM). This project provides crucial information regarding the failure behavior of soft materials, which are ubiquitous in nature and engineered materials. Furthermore, this information will advance application fields including biomedical devices and soft robotics, where soft materials are heavily employed but challenges arise when addressing the failure and mechanical performance of these platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要 软材料在自然界中无处不在(植物、组织、食物),并且在高级工程应用(植入式医疗设备等)中也很有趣。软材料的用途非常广泛,特别是聚合物网络和凝胶,因为它们可以被设计为与复杂的环境(生物系统、组织、水环境等)兼容。尽管众所周知,软材料比脆性塑料或金属能够承受更大的变形,但它们仍然会遭受突然和灾难性的破坏,例如几乎瞬间跨越整个材料的快速形成的裂纹。这限制了软材料的潜力,因为工程材料通常旨在避免或消除灾难性故障事件的可能性。虽然在传统弹性固体中探索了几何形状和失效模式之间的基本关系,但在为软材料建立类似的设计原理方面所做的工作有限。因此,了解如何定制软材料的失效响应,特别是在使用之前,至关重要。该项目通过研究几何形状(例如,晶格图案)以及夹杂物的存在(例如,晶格结构内的填充区域)如何影响软材料(主要是聚合物凝胶)的失效模式来解决这一差距。此外,该项目还为来自不同学科(材料科学、物理学和土木工程)的学生提供了独特的培训机会,使他们能够共同协作并参与两个机构之间的研究交流。这些交流为学生提供了参与自己以外的学科和部门的机会,以加强他们的培训,拓宽他们的专业科学网络,并使自己成为 STEM 劳动力的一员。 技术摘要 复合材料,例如穿孔结构或结构具有嵌入域,可以非常自由地改变材料属性,例如刚度、韧性和失效模式。例如,受到应变的塑料晶格的失效模式可以通过几何形状来定制;较薄的支柱可承受缓慢且分散的失效。虽然在传统弹性固体中已经探索了几何形状和失效模式之间的这种类型的关系,但为软材料建立类似的设计原理所做的工作却很有限。该项目通过研究晶格结构的几何形状以及工程夹杂物如何影响软材料(聚合物凝胶)的失效模式来解决这一差距。这项研究采用实验和计算相结合的方法来系统地解决该材料系统的大参数空间问题,包括晶格几何形状、凝胶刚度以及晶格结构和工程夹杂物之间的机械性能差异。在该项目中,使用光刻技术制造样品,并使用光弹性成像来建立应力传递和失效模式之间的关系。光弹性成像为使用扩展有限元法 (XFEM) 的计算模型提供信息。该项目提供了有关软材料失效行为的重要信息,软材料在自然界和工程材料中普遍存在。此外,这些信息将推动包括生物医学设备和软机器人在内的应用领域的发展,这些领域大量使用软材料,但在解决这些平台的故障和机械性能时会出现挑战。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle Driscoll其他文献

Wobbling and Migrating Ferrofluid Droplets
摆动和迁移的铁磁流体液滴
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Aggarwal;Shih;E. Kirkinis;Mohammed Imran Khan;Bei Fan;Michelle Driscoll;Monica Olvera de la Cruz
  • 通讯作者:
    Monica Olvera de la Cruz
Restructuring a passive colloidal suspension using a rotationally driven particle.
使用旋转驱动粒子重构被动胶体悬浮液。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Shih;Hector Manuel Lopez Rios;M. Olvera de la Cruz;Michelle Driscoll
  • 通讯作者:
    Michelle Driscoll
Unconstrained dynamic gel swelling generates transient surface deformations
无约束的动态凝胶膨胀产生瞬态表面变形
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alyssa VanZanten;Shih;Michelle Driscoll;Caroline R Szczepanski
  • 通讯作者:
    Caroline R Szczepanski

Michelle Driscoll的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michelle Driscoll', 18)}}的其他基金

Collaborative Research: Impact of a colloidal suspension droplet: Suspension flows at extreme shear rates
合作研究:胶体悬浮液液滴的影响:极端剪切速率下的悬浮液流动
  • 批准号:
    2004176
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

抑制RUVBL1/2复合体逆转HnRNPA2B1-SG水凝胶相变阻断老年MCI大鼠术后神经认知恢复延迟动力学机制研究
  • 批准号:
    82371205
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有光电刺激效应的仿生水凝胶的构建及其修复软骨缺损的研究
  • 批准号:
    82302662
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
两亲性含磷树冠大分子基水凝胶微球渗透和软骨基质锚定的研究
  • 批准号:
    52303190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图案化PVA水凝胶通过物理-化学协同调控巨噬细胞极化促进糖尿病皮肤创面修复的研究
  • 批准号:
    82372528
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
氯苯和Hg在富氧空位CeO2/TiO2气凝胶上的低温协同脱除及其机理研究
  • 批准号:
    52300135
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Designing Linked Gel Networks with Tunable Valence
合作研究:DMREF:设计具有可调价的链接凝胶网络
  • 批准号:
    2323483
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Designing Linked Gel Networks with Tunable Valence
合作研究:DMREF:设计具有可调价的链接凝胶网络
  • 批准号:
    2323482
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
  • 批准号:
    2311697
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: DOC removal in the ocean according to polymer gel theory
合作研究:根据聚合物凝胶理论去除海洋中的DOC
  • 批准号:
    1634009
  • 财政年份:
    2016
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: DOC Removal in the Ocean According to Polymer Gel Theory
合作研究:根据聚合物凝胶理论去除海洋中的DOC
  • 批准号:
    1634250
  • 财政年份:
    2016
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了