Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits

石墨烯射频电路产生的电磁物理不可克隆功能

基本信息

  • 批准号:
    2229659
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Rapid advances in wireless technologies have led to a myriad of internet-connected devices, which sense the surroundings and share sensor data along with the identifications of these devices, the so-called Internet-of-Things (IoTs). However, these smart wireless devices with currently affordable authentication techniques based on digital memories are vulnerable to various cyber-attacks and device cloning. The security challenge posed by counterfeit or malicious hardware has attracted worldwide attention due to the potential significant economic loss to society and cyber threats to individuals. This research aims to develop innovative electromagnetic physical unclonable functions (EMPUFs) that can be used as an ultra-lightweight, attack-resilient authentication module for wireless communication and wireless access control. Inspired by speech recognition using artificial intelligence to track acoustic signatures of billions of different human voices, the EMPUF exploits imperfections or sample-specific noises in the radio-frequency (RF) circuitry of a wireless device to generate encryption keys. In this scenario, wireless devices can be identified using the device-specific uniqueness derived from the arbitrary waveform and polarization of the radio waves they produce. In this project, new types of RF devices and circuits will be built using nanomaterials, such as graphene with highly random and somewhat reconfigurable electronic properties, to maximize the uniqueness of RF fingerprints. This interdisciplinary research interfacing hardware security, electromagnetics, RF circuits, nanoelectronics, and artificial intelligence will provide graduate, undergraduate, and K-12 students with a multidisciplinary research experience. The project will combine research, education, and community outreach activities through a series of programs at the University of Illinois, such as Women in Engineering Program, Early Outreach Program, and Early Research Scholars Program, to increase the representation of women and underrepresented minorities in the STEM fields.This research aims to develop a new class of strong physical unclonable functions (PUFs) for cryptographic key generation and authentication, as the first barrier fending off cyber-attacks in a network consisting of abundant resource-scarce wireless devices. Manufacturing process variations of the complementary metal-oxide-semiconductor (CMOS) technology have been widely used to implement PUFs and true random number generators based on arbiters, ring oscillators, flip-flops, and static random-access memories (SRAM). However, it remains challenging to apply this concept to low-cost, small-footprint IoTs and smart devices that have limited available power and memory capacity. This project proposes an ultra-lightweight, energy-efficient EMPUF that identifies signal variations in the RF front-end components such as modulators, synthesizers, mixers, and oscillators built using graphene-based devices. Specifically, the high entropy inherent in graphene field-effect transistors (GFETs) originating from random strains, defects, and dopant fluctuations will be harnessed to realize high-performance EMPUF instances. Moreover, the reconfigurable and resettable electronic properties of GFETs will be exploited to generate a redundantly large challenge-response pairs (CRPs), enabling the practical realization of strong PUFs and beyond-silicon security primitives. A computationally efficient machine learning algorithm will also be developed to retrieve important RF footprints from background noises. The outcomes of this research are expected to help establish highly versatile anti-counterfeiting solutions, which are urgently needed in many fields, such as wireless access control, safety in telematics infrastructure, RF identification, encrypted wireless communications, and authentication of merchandise, to name a few.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线技术的快速发展催生了无数联网设备,这些设备可以感知周围环境并共享传感器数据以及这些设备的标识,即所谓的物联网 (IoT)。然而,这些智能无线设备采用目前经济实惠的基于数字存储器的身份验证技术,很容易受到各种网络攻击和设备克隆。由于潜在的社会重大经济损失和个人的网络威胁,假冒或恶意硬件带来的安全挑战已引起全世界的关注。这项研究旨在开发创新的电磁物理不可克隆功能(EMPUF),可用作无线通信和无线访问控制的超轻量级、抗攻击的身份验证模块。受到使用人工智能跟踪数十亿种不同人类声音的声学特征的语音识别的启发,EMPUF 利用无线设备射频 (RF) 电路中的缺陷或样本特定噪声来生成加密密钥。在这种情况下,可以使用源自无线设备产生的无线电波的任意波形和极化的设备特定唯一性来识别无线设备。在该项目中,将使用纳米材料(例如具有高度随机性和可重构电子特性的石墨烯)构建新型射频设备和电路,以最大限度地提高射频指纹的独特性。这项跨学科研究将硬件安全、电磁学、射频电路、纳米电子学和人工智能结合起来,将为研究生、本科生和 K-12 学生提供多学科研究经验。该项目将通过伊利诺伊大学的一系列项目将研究、教育和社区外展活动结合起来,例如女性工程项目、早期外展项目和早期研究学者项目,以增加女性和代表性不足的少数族裔的代表性。这项研究旨在开发一类新的强物理不可克隆函数 (PUF),用于加密密钥生成和身份验证,作为在由丰富资源稀缺的无线网络组成的网络中抵御网络攻击的第一道屏障设备。互补金属氧化物半导体 (CMOS) 技术的制造工艺变化已广泛用于实现 PUF 和基于仲裁器、环形振荡器、触发器和静态随机存取存储器 (SRAM) 的真随机数生成器。然而,将这一概念应用于低成本、小占地面积的物联网和可用功率和内存容量有限的智能设备仍然具有挑战性。该项目提出了一种超轻量、节能的 EMPUF,可识别射频前端组件中的信号变化,例如使用石墨烯设备构建的调制器、合成器、混频器和振荡器。具体来说,石墨烯场效应晶体管(GFET)中因随机应变、缺陷和掺杂剂波动而固有的高熵将被利用来实现高性能 EMPUF 实例。此外,GFET 的可重构和可重置电子特性将被用来生成冗余大的挑战-响应对(CRP),从而能够实际实现强大的 PUF 和超硅安全原语。还将开发一种计算效率高的机器学习算法,以从背景噪声中检索重要的射频足迹。这项研究的成果预计将有助于建立高度通用的防伪解决方案,这些解决方案是许多领域迫切需要的,例如无线访问控制、远程信息处理基础设施安全、射频识别、加密无线通信和商品认证等。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pai-Yen Chen其他文献

Pai-Yen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pai-Yen Chen', 18)}}的其他基金

Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted Tunneling
合作研究:基于多光子辅助隧道的波长可扩展、室温中红外光电探测器
  • 批准号:
    2210977
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
I-Corps: Accurate, Contiguous and Portable Wireless Intraocular Contact Lens Pressure Sensors
I-Corps:准确、连续、便携式无线眼内隐形眼镜压力传感器
  • 批准号:
    2001328
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1917678
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1752123
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1914420
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1711409
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

传粉者身体上多区域花粉落置对传粉精确性的影响
  • 批准号:
    31700200
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Medium: Physically Unclonable Wireless Systems (PUWS) for RF Fingerprinting and Physical Layer Security
SaTC:核心:中:用于射频指纹识别和物理层安全的物理不可克隆无线系统 (PUWS)
  • 批准号:
    2233774
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
  • 批准号:
    2244479
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
HIGH -SPEED AND ACCURATE AUTHENTICITY JUDGEMENT USING PHYSICALLY UNCLONABLE FUNCTION OF INKJET PRINTED CODE
利用喷码物理不可克隆功能高速准确真伪判断
  • 批准号:
    21K11939
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of highly secure and reliable authentication system based on physically unclonable hardware identifier
基于物理不可克隆硬件标识符的高安全可靠认证系统开发
  • 批准号:
    20K19765
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RII Track-4: Photovoltaic Based Physically Unclonable Functions (PUFs) for Vehicular Security
RII Track-4:用于车辆安全的基于光伏的物理不可克隆功能 (PUF)
  • 批准号:
    1738662
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了