SHF: Small: Synthesizing Mixed Discrete/Continuous Programs with the Neurosymbolic Librarian
SHF:小型:与神经符号图书馆员综合混合离散/连续程序
基本信息
- 批准号:2310350
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns automatically generating computer programs that can use neural networks and other machine learning models as subroutines. Programs like these are important because they form the cornerstone of modern machine learning systems, and also because symbolic programs and neural networks are complementary in their abilities, so such systems could learn to solve many diverse problems using a mixture of neural networks and symbolic code. However such programs are difficult to automatically generate or synthesize. The project’s novelties are new strategies that makes it much easier to generate such programs by using machine learning. The project's impact is a step toward systems that could learn to solve new problems using a mixture of neural networks and symbolic code, as well as a step toward Artificial Intelligence (AI) systems that could assist the development of further AI systems.From a technical perspective the project presents a way of jointly generating symbolic code and neural network weights both using gradient descent, by relaxing the discrete space of symbolic code into a continuous form. Because convergence of this relaxation can be difficult, the investigator proposes learning to generate the code in a multitask setting, which allows learning across many problems to aid convergence. The results will be showcased on generating 3-dimensional graphics programs, mixing implicit neural representations of geometry with discrete graphics primitives, as well as a few-shot learning domain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目会自动生成可以使用神经网络和其他机器学习模型作为子例程的程序。该项目的新策略通过学习项目的影响使生成此类程序变得更加容易,这是对可以学习迈向人工智能(AI)系统的系统,从而可以发展进一步的AI系统。从技术角度来看,项目通过将符号代码的离散与连续形式相关联,以一种共同生成代码和神经网络权重的方式结果将在生成三维HIC程序上展示,将几何形状的隐式神经表示与离散的图形原始词混合在一起。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Ellis其他文献
Efficient Pragmatic Program Synthesis with Informative Specifications
具有信息规范的高效实用程序综合
- DOI:
10.48550/arxiv.2204.02495 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Saujas Vaduguru;Kevin Ellis;Yewen Pu - 通讯作者:
Yewen Pu
DeepSynth: Scaling Neural Program Synthesis with Distribution-based Search
DeepSynth:通过基于分布的搜索扩展神经程序合成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nathanaël Fijalkow;Guillaume Lagarde;Théo Matricon;Kevin Ellis;Pierre Ohlmann;Akarsh Potta - 通讯作者:
Akarsh Potta
Helping you solve your EMC problems
帮助您解决 EMC 问题
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ing Keith Armstrong;C. Miet;Mieee Acgi BSchons;Feng Chen;Kevin Ellis;Neil Helsby;M. Langrish;Tomasz Liszka;A. Keenan - 通讯作者:
A. Keenan
Learning Graphical Concepts
学习图形概念
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kevin Ellis;Ryan P. Adams;Joshua B. Tenenebaum - 通讯作者:
Joshua B. Tenenebaum
Library learning for neurally-guided Bayesian program induction
用于神经引导贝叶斯程序归纳的库学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kevin Ellis;Lucas Morales;Mathias Sablé;Armando Solar;J. Tenenbaum - 通讯作者:
J. Tenenbaum
Kevin Ellis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Ellis', 18)}}的其他基金
CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
- 批准号:
2338833 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
综合应用多组学方法鉴定大豆-根瘤菌共生固氮中有功能的小肽
- 批准号:32300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Nurr1通过调控小胶质细胞微环境在唐氏综合征中的神经保护机制
- 批准号:82360261
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
从III型干扰素对RPE的调控探讨Behcet病和Vogt-小柳原田综合征发病机制的同质性和异质性
- 批准号:82371046
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
放射免疫综合疗法增强广泛期小细胞肺癌的疗效与机制研究
- 批准号:82303701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IL-22R1-IRF3介导曲克芦丁促下丘脑小胶质细胞M1/2极化改善多囊卵巢综合征的新机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF CORE: Small: Hybrid NLP and Formal Techniques for Synthesizing Assertions and Identifying Ambiguities from English
SHF CORE:小型:用于综合断言和识别英语歧义的混合 NLP 和形式化技术
- 批准号:
2101021 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small:Automatically Synthesizing System and Integration Tests
SHF:小型:自动综合系统和集成测试
- 批准号:
1908094 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: RUI: Synchronicity: A Framework for Synthesizing Concurrent Software from Sequential and Cooperative Specifications
SHF:小型:协作研究:RUI:同步性:根据顺序和协作规范合成并发软件的框架
- 批准号:
1812951 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Synchronicity: A Framework for Synthesizing Concurrent Software from Sequential and Cooperative Specifications
SHF:小型:协作研究:同步性:根据顺序和协作规范合成并发软件的框架
- 批准号:
1813133 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Autograph: A System for Synthesizing Concurrent Data Structure Implementations
SHF:小型:Autograph:综合并发数据结构实现的系统
- 批准号:
1218568 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant