Electrically driven plasmonic light emitters strongly coupled to excitons and dielectric resonators

与激子和介电谐振器强耦合的电驱动等离子体发光体

基本信息

  • 批准号:
    2309941
  • 负责人:
  • 金额:
    $ 44.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Extremely small light emitting devices are of potential use in next-generation computing and communications technologies. Two metal electrodes separated by an atomic-scale gap can function as both an electrical device and a nanoscale light source. When a current is driven across the nanogap, the electrons that “tunnel” from one electrode to the other can excite collective motions of the electrons, called plasmons, in the electrodes. Energy from successive electrons can build up in the plasmons and the electrodes, leading to a steady-state population of electrons with an effective temperature so high that they glow in the visible range. If the nanogap is very close to materials with optical resonances in that same energy range, then the light emission can be strongly modified, as energy is transferred back and forth between the metal and the optical materials. The PI proposes to examine light emission in two such coupled systems: 2D materials that act as semiconductors and have the kind of optical transitions in light emitting diodes; and special patterned insulators (cavities) that are designed to trap light at specific energies. The goals are to maximize the strength of the plasmon-material energy transfer, to examine the effect on light emission of electrically tuning the semiconductor and having very sharp cavity resonances, to create light emitting devices of this type that function stably at room temperature, and to count individual emitted photons to search for quantum effects in the light emission. Results will be presented through publications, conference talks, and accessible writing by the PI on his blog. This project will support the professional development and research training of graduate students and undergraduate researchers, contributing to a skilled technological workforce. The PI will participate in Rice efforts incorporating K12 teachers and will continue public outreach to lifelong learners through the Glasscock School of Continuing Studies. The PI’s group has demonstrated that nanoscale plasmonic tunnel junctions can emit light at energies above the applied electrical bias in an electroluminescent process based on the plasmon-assisted generation and plasmon-enhanced recombination of a steady-state population of hot carriers. In nanogaps coupled to 2D semiconductors, the electroluminescence shows peak splittings indicative of strong plasmon/exciton coupling, showing that these devices are electrically driven “plexcitonic” emitters. The PI proposes an integrated research and education program to quantify and maximize these effects. Goals include maximizing the plasmon/exciton coupling in devices incorporating gate-tunable transition metal dichalcogenides; demonstrating electroluminescence in plasmonic nanogaps strongly coupled to photonic crystal dielectric cavities; implementing such junctions in plasmonic materials that allow room temperature operation; and using photon counting statistics to examine photon bunching/antibunching, to better understand emission mechanisms in these polaritonic structures. The PI’s team of graduate and undergraduate researchers will collaborate with theorists in modeling of these systems, enabling critical feedback for optimization of device structures. Results will be presented through publications, conference talks, and accessible writing by the PI on his blog. This project will support the professional development and research training of graduate students and undergraduate researchers, contributing to a skilled technological workforce. The PI will participate in Rice efforts incorporating K12 teachers and will continue public outreach to lifelong learners through the Glasscock School of Continuing Studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极小的发光器件在下一代计算和通信技术中具有潜在用途,当电流穿过纳米间隙时,两个由原子级间隙隔开的金属电极可以充当电气设备和纳米级光源。从一个电极“隧道”到另一个电极的电子可以激发电极中电子的集体运动,称为等离子体激元。来自连续电子的能量可以在等离子体激元和电极中积聚,从而形成稳态。有效温度如此高的电子群,它们在可见光范围内发光如果纳米间隙非常接近在相同能量范围内具有光学共振的材料,那么随着能量来回转移,光发射可以被强烈改变。 PI 提议检查两种此类耦合系统中的光发射:充当半导体并具有发光二极管中的光学跃迁的 2D 材料;以及设计的特殊图案绝缘体(腔体)。捕获特定能量的光,目标是最大化等离激元材料能量转移的强度,检查电调谐半导体和具有非常尖锐的腔谐振对光发射的影响,以创建这种类型的发光器件。该项目将在室温下稳定运行,并对单个发射的光子进行计数,以寻找光发射中的量子效应。该项目将通过出版物、会议演讲和 PI 的博客上的易读文章来呈现。研究生和本科生研究人员的研究培训, PI 将参与莱斯大学 K12 教师的工作,并将通过格拉斯考克继续研究学院继续向终身学习者进行公开宣传。 PI 的团队已经证明,纳米级等离激元隧道结可以发出高于能量的光。在电致发光过程中施加电偏压,该过程基于与二维半导体耦合的纳米间隙中热载流子的稳态群体的等离子体辅助生成和等离子体增强复合。电致发光显示出表明强等离激元/激子耦合的峰值分裂,表明这些器件是电驱动的“丛激子”发射器。PI提出了一个综合研究和教育计划来量化和最大化这些效应,包括最大化等离激元/激子耦合。结合栅极可调过渡金属二硫化物的器件;展示了与光子晶体介电腔强耦合的等离激元纳米间隙中的电致发光;允许室温操作的等离子体材料;并使用光子计数统计来检查光子聚束/反聚束,以更好地了解这些极化子结构中的发射机制。PI 的研究生和本科生研究人员团队将与理论家合作对这些系统进行建模,从而实现关键的系统模型。设备结构优化的反馈结果将通过 PI 的出版物、会议演讲和博客上的易读文章呈现。该项目将支持研究生和本科生研究人员的专业发展和研究培训,为培养熟练的技术劳动力做出贡献。 。这PI 将参与莱斯大学 K12 教师的努力,并将通过格拉斯考克继续教育学院继续向终身学习者进行公共宣传。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes
  • DOI:
    10.1515/nanoph-2023-0710
  • 发表时间:
    2024-03-28
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Zhu,Yunxuan;Raschke,Markus B.;Cui,Longji
  • 通讯作者:
    Cui,Longji
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Natelson其他文献

Douglas Natelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Natelson', 18)}}的其他基金

Angular momentum transport in insulators: Magnons and other emergent excitations
绝缘体中的角动量传输:磁振子和其他紧急激发
  • 批准号:
    2102028
  • 财政年份:
    2021
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Thermoelectric metal nanostructures: Disorder, plasmons, and photodetection
热电金属纳米结构:无序、等离激元和光电检测
  • 批准号:
    1704625
  • 财政年份:
    2017
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Noise in 2d topological edges and spin Hall systems
二维拓扑边缘和自旋霍尔系统中的噪声
  • 批准号:
    1704264
  • 财政年份:
    2017
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Nanoscribe nano3d Printer/Optical Lithography System
MRI:购买 Nanoscribe nano3d 打印机/光学光刻系统
  • 批准号:
    1625186
  • 财政年份:
    2016
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Workshop Proposal: Interacting Quantum Systems Out of Equilibrium
研讨会提案:非平衡态量子系统的相互作用
  • 批准号:
    1619989
  • 财政年份:
    2016
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Noise, inelastic processes, and coherence in atomic-scale and molecular junctions
原子尺度和分子连接中的噪声、非弹性过程和相干性
  • 批准号:
    1305879
  • 财政年份:
    2013
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
Exploring charge transfer at organic device interfaces
探索有机器件界面的电荷转移
  • 批准号:
    0901348
  • 财政年份:
    2009
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Noise and High Frequency Properties of Single-Molecule Transistors
单分子晶体管的噪声和高频特性
  • 批准号:
    0855607
  • 财政年份:
    2009
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
Organic Semiconductor Devices: Contacts, Transport and the Nanoscale Limit
有机半导体器件:接触、传输和纳米尺度极限
  • 批准号:
    0601303
  • 财政年份:
    2006
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
CAREER: Conduction at the Molecular Scale and Nanoscience Education
职业:分子尺度传导和纳米科学教育
  • 批准号:
    0347253
  • 财政年份:
    2004
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

电子束驱动的等离子体尾波正电子加速机制研究
  • 批准号:
    12305152
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
涡旋拉盖尔-高斯光驱动的激光等离子体参量不稳定性
  • 批准号:
    12375243
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
等离子体振荡驱动的纳米荧光温度计超快响应模式
  • 批准号:
    62275079
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Cu基催化膜对等离子体驱动CO2加氢与甲醇吸收分离的协同强化机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于PMMA-纸基复合芯片的等离子体驱动纳米局域超快多重PCR研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of visible-driven plasmonic heterojunction N-TiO2/BiVO4 photocatalyst for water splitting
用于水分解的可见光驱动等离子体异质结N-TiO2/BiVO4光催化剂的开发
  • 批准号:
    567746-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Postdoctoral Fellowships
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
  • 批准号:
    2202268
  • 财政年份:
    2022
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
Development of visible-driven plasmonic heterojunction N-TiO2/BiVO4 photocatalyst for water splitting
用于水分解的可见光驱动等离子体异质结N-TiO2/BiVO4光催化剂的开发
  • 批准号:
    567746-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Postdoctoral Fellowships
Solar-driven Plasmonic Catalysis
太阳能驱动的等离激元催化
  • 批准号:
    2603732
  • 财政年份:
    2021
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Studentship
Plasmonic Interfaces for Solar-Driven Desalination Process
用于太阳能驱动海水淡化过程的等离子体接口
  • 批准号:
    552331-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 44.26万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了