Electrically driven plasmonic light emitters strongly coupled to excitons and dielectric resonators

与激子和介电谐振器强耦合的电驱动等离子体发光体

基本信息

  • 批准号:
    2309941
  • 负责人:
  • 金额:
    $ 44.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Extremely small light emitting devices are of potential use in next-generation computing and communications technologies. Two metal electrodes separated by an atomic-scale gap can function as both an electrical device and a nanoscale light source. When a current is driven across the nanogap, the electrons that “tunnel” from one electrode to the other can excite collective motions of the electrons, called plasmons, in the electrodes. Energy from successive electrons can build up in the plasmons and the electrodes, leading to a steady-state population of electrons with an effective temperature so high that they glow in the visible range. If the nanogap is very close to materials with optical resonances in that same energy range, then the light emission can be strongly modified, as energy is transferred back and forth between the metal and the optical materials. The PI proposes to examine light emission in two such coupled systems: 2D materials that act as semiconductors and have the kind of optical transitions in light emitting diodes; and special patterned insulators (cavities) that are designed to trap light at specific energies. The goals are to maximize the strength of the plasmon-material energy transfer, to examine the effect on light emission of electrically tuning the semiconductor and having very sharp cavity resonances, to create light emitting devices of this type that function stably at room temperature, and to count individual emitted photons to search for quantum effects in the light emission. Results will be presented through publications, conference talks, and accessible writing by the PI on his blog. This project will support the professional development and research training of graduate students and undergraduate researchers, contributing to a skilled technological workforce. The PI will participate in Rice efforts incorporating K12 teachers and will continue public outreach to lifelong learners through the Glasscock School of Continuing Studies. The PI’s group has demonstrated that nanoscale plasmonic tunnel junctions can emit light at energies above the applied electrical bias in an electroluminescent process based on the plasmon-assisted generation and plasmon-enhanced recombination of a steady-state population of hot carriers. In nanogaps coupled to 2D semiconductors, the electroluminescence shows peak splittings indicative of strong plasmon/exciton coupling, showing that these devices are electrically driven “plexcitonic” emitters. The PI proposes an integrated research and education program to quantify and maximize these effects. Goals include maximizing the plasmon/exciton coupling in devices incorporating gate-tunable transition metal dichalcogenides; demonstrating electroluminescence in plasmonic nanogaps strongly coupled to photonic crystal dielectric cavities; implementing such junctions in plasmonic materials that allow room temperature operation; and using photon counting statistics to examine photon bunching/antibunching, to better understand emission mechanisms in these polaritonic structures. The PI’s team of graduate and undergraduate researchers will collaborate with theorists in modeling of these systems, enabling critical feedback for optimization of device structures. Results will be presented through publications, conference talks, and accessible writing by the PI on his blog. This project will support the professional development and research training of graduate students and undergraduate researchers, contributing to a skilled technological workforce. The PI will participate in Rice efforts incorporating K12 teachers and will continue public outreach to lifelong learners through the Glasscock School of Continuing Studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发光设备极小,可以在下一代计算和通信技术中使用。两个被原子尺度间隙隔开的金属电子既可以充当电动器件和​​纳米级光源。当电流跨过纳米含量时,从一个电极到另一个电极“隧道”的电子可以激发电子中电子的集体运动,称为电子等电子。来自成功电子的能量可以在等离子和电子中积聚,从而导致具有有效温度的电子稳态人群,以至于它们在可见范围内发光。如果NanoGAP非常接近具有相同能量范围内光学共振的材料,则可以对光发射进行强烈修改,因为金属和光学材料之间的能量来回传递。 PI的提案要检查两个这样的耦合系统中的光发射:2D材料充当半导体,并具有光发射二极管中的光学转变;以及旨在将特定能量捕获光的特殊图案绝缘子(腔)。目标是最大程度地发挥等离子体 - 材料的能量传递的强度,以检查对半导体电气发射的影响,并具有非常清晰的空腔共振,以在室温下稳定运行,并计算单个发射的照片以在光发射中搜索量子效应。结果将通过PI在其博客上的出版物,会议演讲和可访问的写作介绍。该项目将支持研究生和本科研究人员的专业发展和研究培训,并为熟练的技术劳动力做出了贡献。 PI将参加编码K12教师的大米努力,并将通过玻璃柯克继续学习的学校继续向终身学习者进行公众宣传。 PI的组表明,基于等离子辅助的产生和等离子体增强热载体稳态种群的电致电工艺,纳米等离子隧道连接可以在施加的电动偏置的能量上发出光。在耦合到2D半导体的纳米胶囊中,电致发光显示出峰值分裂,表明具有强等离子体/激子偶联的峰值,表明这些设备是电动驱动的“频谱”发射器。 PI提出了一项综合研究和教育计划,以量化和最大化这些影响。目标包括最大化设备中的等离子体/激子耦合,融合了栅极可调的过渡金属二进制基因;在等离子体纳米胶质中的电致发光,与光子晶体饮食腔密切耦合;在允许室温运行的等离子体材料中实施此类连接;并使用光子计数统计数据检查光子束/抗挑战,以更好地了解这些极化结构中的发射机制。 PI的毕业生和本科研究人员团队将与理论家合作建模这些系统,从而为优化设备结构提供重要的反馈。结果将通过PI在其博客上的出版物,会议演讲和可访问的写作介绍。该项目将支持研究生和本科研究人员的专业发展和研究培训,并为熟练的技术劳动力做出了贡献。 PI将参加结合K12教师的大米努力,并将通过Glasscock持续研究学院继续公开向终身学习者推广。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的评估来通过评估来获得的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes
  • DOI:
    10.1515/nanoph-2023-0710
  • 发表时间:
    2024-03-28
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Zhu,Yunxuan;Raschke,Markus B.;Cui,Longji
  • 通讯作者:
    Cui,Longji
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Natelson其他文献

Anomalous dielectric properties of amorphous solids at low temperatures
  • DOI:
    10.1016/0921-4526(95)00708-3
  • 发表时间:
    1996-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    D.D. Osheroff;Sven Rogge;Douglas Natelson
  • 通讯作者:
    Douglas Natelson

Douglas Natelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Natelson', 18)}}的其他基金

Angular momentum transport in insulators: Magnons and other emergent excitations
绝缘体中的角动量传输:磁振子和其他紧急激发
  • 批准号:
    2102028
  • 财政年份:
    2021
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Thermoelectric metal nanostructures: Disorder, plasmons, and photodetection
热电金属纳米结构:无序、等离激元和光电检测
  • 批准号:
    1704625
  • 财政年份:
    2017
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Noise in 2d topological edges and spin Hall systems
二维拓扑边缘和自旋霍尔系统中的噪声
  • 批准号:
    1704264
  • 财政年份:
    2017
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Nanoscribe nano3d Printer/Optical Lithography System
MRI:购买 Nanoscribe nano3d 打印机/光学光刻系统
  • 批准号:
    1625186
  • 财政年份:
    2016
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Workshop Proposal: Interacting Quantum Systems Out of Equilibrium
研讨会提案:非平衡态量子系统的相互作用
  • 批准号:
    1619989
  • 财政年份:
    2016
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Noise, inelastic processes, and coherence in atomic-scale and molecular junctions
原子尺度和分子连接中的噪声、非弹性过程和相干性
  • 批准号:
    1305879
  • 财政年份:
    2013
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
Exploring charge transfer at organic device interfaces
探索有机器件界面的电荷转移
  • 批准号:
    0901348
  • 财政年份:
    2009
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
Noise and High Frequency Properties of Single-Molecule Transistors
单分子晶体管的噪声和高频特性
  • 批准号:
    0855607
  • 财政年份:
    2009
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
Organic Semiconductor Devices: Contacts, Transport and the Nanoscale Limit
有机半导体器件:接触、传输和纳米尺度极限
  • 批准号:
    0601303
  • 财政年份:
    2006
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Standard Grant
CAREER: Conduction at the Molecular Scale and Nanoscience Education
职业:分子尺度传导和纳米科学教育
  • 批准号:
    0347253
  • 财政年份:
    2004
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

涡旋拉盖尔-高斯光驱动的激光等离子体参量不稳定性
  • 批准号:
    12375243
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
燃烧等离子体中类鱼骨模驱动高能量粒子输运与损失的研究
  • 批准号:
    12305241
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
电子束驱动的等离子体尾波正电子加速机制研究
  • 批准号:
    12305152
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米过渡金属等离子激元共振电场与分子极化电场耦合驱动水中新污染物降解机制
  • 批准号:
    52300038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于激光等离子体尾波加速的预聚束电子束产生及其驱动的X射线自由电子激光
  • 批准号:
    12375147
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目

相似海外基金

Development of visible-driven plasmonic heterojunction N-TiO2/BiVO4 photocatalyst for water splitting
用于水分解的可见光驱动等离子体异质结N-TiO2/BiVO4光催化剂的开发
  • 批准号:
    567746-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Postdoctoral Fellowships
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
  • 批准号:
    2202268
  • 财政年份:
    2022
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Continuing Grant
Development of visible-driven plasmonic heterojunction N-TiO2/BiVO4 photocatalyst for water splitting
用于水分解的可见光驱动等离子体异质结N-TiO2/BiVO4光催化剂的开发
  • 批准号:
    567746-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Postdoctoral Fellowships
Solar-driven Plasmonic Catalysis
太阳能驱动的等离激元催化
  • 批准号:
    2603732
  • 财政年份:
    2021
  • 资助金额:
    $ 44.26万
  • 项目类别:
    Studentship
Plasmonic Interfaces for Solar-Driven Desalination Process
用于太阳能驱动海水淡化过程的等离子体接口
  • 批准号:
    552331-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 44.26万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了