Algorithms, Theory, and Applications for Fiber Coating Systems

光纤涂层系统的算法、理论和应用

基本信息

  • 批准号:
    2309774
  • 负责人:
  • 金额:
    $ 29.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Thin liquid films flowing down a vertical fiber, a phenomenon known as fiber coating, is a fundamental component in various engineering applications such as mass and heat exchangers for thermal desalination, water vapor, and ultra-fine particle capture. These liquid films spontaneously exhibit intriguing interfacial instabilities, leading to trains of traveling droplets and irregular wavy patterns. Although there have been extensive studies on the modeling of fiber coating dynamics, the inherent nonlinearity and degeneracy of these models often present analytical and computational challenges in broader applications. This research project aims to develop a hybrid numerical and machine learning framework that accelerates the computation and facilitates the control of large-scale stiff problems associated with fiber coating systems. The development of these techniques can lead to a prototype for real-time simulation and prediction in fiber coating applications. Parts of the project will be incorporated into the investigator’s courses on scientific computing and data science. This project will also provide research training opportunities for both undergraduate and graduate students. This project will employ analytical approaches, numerical simulations, and machine learning techniques to develop theory and algorithms for challenging free-surface flow problems that arise from fiber coating systems. Such problems are characterized by fourth-order highly-nonlinear partial differential equation (PDE) systems, which are sensitive to traditional numerical methods and data-driven machine-learning approaches. The objectives of the project are organized around three interconnected aspects: 1) Analysis of the regularity and structure of traveling droplets described by coupled PDE systems. The derived structures will be utilized to develop simplified dynamical systems from full-order models for individual droplets. A prototype control problem will be studied to establish the foundation for control design of general fiber coating systems; 2) Development of robust and structural-preserving algorithms for simulating and learning fiber coating dynamics. This involves bridging physics-based modeling principles, PDE theory, and neural ordinary differential equation techniques for long-time sequential learning and reduced-order modeling. The data-driven learning techniques developed for high-order nonlinear degenerate PDEs in this project are expected to advance scientific machine learning for stiff physical systems; 3) A real-world large-scale application will serve as a case study for the theoretical understanding and verification of the developed algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沿垂直纤维流动的薄液膜(这种现象称为纤维涂层)是各种工程应用的基本组成部分,例如用于热脱盐、水蒸气和超细颗粒捕获的质量交换器和热交换器。这些液膜自发地表现出有趣的效果。尽管对纤维涂层的建模进行了广泛的动力学研究,但这些模型固有的非线性和简并性通常在更广泛的应用中提出了分析和计算挑战。开发一种混合数值和机器学习框架,可加速计算并促进与纤维涂层系统相关的大规模刚性问题的控制。这些技术的开发可以产生用于纤维涂层应用中的实时模拟和预测的原型。该项目的部分内容将纳入研究者的科学计算和数据科学课程中,该项目还将为本科生和研究生提供研究培训机会,该项目将采用分析方法、数值模拟和机器学习技术来发展理论。以及挑战自由表面流动问题的算法此类问题的特点是四阶高度非线性偏微分方程(PDE)系统,该系统对传统数值方法和数据驱动的机器学习方法很敏感该项目的目标围绕三个目标进行组织。相互关联的方面: 1)分析由耦合偏微分方程系统描述的行进液滴的规律和结构,将利用导出的结构从单个液滴的全阶模型开发简化的动力系统,以建立原型控制问题。通用光纤涂层控制设计基础2) 开发用于模拟和学习光纤涂层动力学的稳健且结构保持的算法,这涉及桥接基于物理的建模原理、偏微分方程理论和神经常微分方程技术,以进行长时间顺序学习和降阶建模。 - 该项目中为高阶非线性简并偏微分方程开发的驱动学习技术有望促进刚性物理系统的科学机器学习;3)现实世界的大规模应用将作为理论理解和验证的案例研究;发展该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hangjie Ji其他文献

A nodal finite element approximation of a phase field model for shape and topology optimization
用于形状和拓扑优化的相场模型的节点有限元近似
  • DOI:
    10.1016/j.amc.2018.07.049
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Xianliang Hu;Yixin Li;Hangjie Ji
  • 通讯作者:
    Hangjie Ji
Mean field control of droplet dynamics with high order finite element computations
利用高阶有限元计算对液滴动力学进行平均场控制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guosheng Fu;Hangjie Ji;Will Pazner;Wuchen Li
  • 通讯作者:
    Wuchen Li

Hangjie Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

​基于自监督学习的医学图像质量迁移反问题理论
  • 批准号:
    12301546
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于ChREBP乙酰化介导脂肪酸代谢探讨“肝病及心”理论内涵及降脂消斑方干预研究
  • 批准号:
    82374192
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
圈长分布理论中的若干问题
  • 批准号:
    12371350
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于自我调节理论的碌感对极简消费的影响机制与边际条件研究
  • 批准号:
    72302097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
  • 批准号:
    MR/Y003926/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Fellowship
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了