Learnable Tensor Algebras for Harnessing Implicit Correlations in Multiway Data

用于利用多路数据中隐式相关性的可学习张量代数

基本信息

  • 批准号:
    2309751
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Big data has revolutionized the kinds of problems we can tackle, enabling unprecedented personalization and innovation across commercial, scientific, and healthcare applications. The ever-growing amount of data has created a pressing need for new methodologies to reduce storage demands and extract representative features for downstream analysis. Many data, such as those arising in computer vision and imaging, neuroscience, networks (e.g., epidemic tracking, cyber security), and more, are natively represented as multiway arrays, or tensors. As a result, tensor-based approaches have become increasingly attractive for dimensionality reduction and feature extraction. However, many tensor-based approaches suffer from a so-called “curse of multidimensionality;” that is, that fundamental mathematical properties break down when applied to multiway data. Recent advances in tensor algebra have overcome this limitation by reframing tensors as mathematical operators rather than stagnant arrays of data. This project will take these advancements to the next level by learning the optimal mathematical operations required to drive down storage costs further while increasing the accuracy of tensor representations. The methods developed in this project will be useful for a wide range of high-impact applications, including precision medicine, climate simulations, and engineering. All algorithms and methods produced will be made available to the public in well-documented, open-source code. This project focuses on developing new methods to maximize the benefits of matrix-mimetic tensor frameworks- multidimensional frameworks that preserve linear algebraic properties. Such frameworks yield theoretical and empirical advantages over traditional matrix-based approaches and alternative tensor-based approaches. The matrix mimeticity arises from interpreting tensors as t-linear operators that multiply using tensor-tensor products. The choice of tensor-tensor product, given by an underlying tensor algebra, is crucial to representation quality, and thus far, has been made heuristically. This project will develop a unifying optimization framework to learn tensor algebras and efficiently represent multiway data with implicit correlations (i.e., relationships unknown a priori and thus challenging to capture heuristically). The learned tensor-tensor products will introduce algorithmic advantages (e.g., fast evaluations and low storage costs) while preserving theoretical guarantees of the matrix-mimetic framework. The main thrusts of this project are (1) to optimize tensor algebras by exploiting the coupling between matrix-mimetic tensor factorizations and tensor-tensor products, (2) to capture nonlinearity in multilinear algorithms by designing novel nonlinear tensor-tensor products, and (3) to extend the proposed algorithms using new, scalable strategies to increase the applicability of matrix-mimetic tensor approaches to massive multiway data applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大数据彻底改变了我们可以解决的各种问题,从而使商业,科学和医疗保健应用中的前所未有的个性化和创新。不断增长的数据量引起了新方法的迫切需求,以减少存储需求并提取代表性特征以进行下游分析。许多数据,例如在计算机视觉和成像中产生的数据,神经科学,网络(例如,流行性跟踪,网络安全)等是多道路阵列或张量。结果,基于张量的方法对于降低维度和特征提取方面变得越来越有吸引力。但是,许多基于张量的方法遭受了所谓的“多维性诅咒”;也就是说,将基本数学属性分解为多路数据。张量代数的最新进展通过将张量作为数学运算符而不是停滞的数据来克服了这一限制。该项目将通过学习进一步降低存储成本所需的最佳数学操作,同时提高张量表示的准确性,从而将这些进步提升到一个新的水平。该项目中开发的方法将用于广泛的高影响应用程序,包括精密医学,气候模拟和工程。所有生产的算法和方法将以有据可查的开源代码向公众提供。该项目着重于开发新方法,以最大程度地提高矩阵模拟张量框架的好处,即保留线性代数属性的多维框架。这种框架比传统基于矩阵的方法和替代张量的方法具有理论和经验优势。矩阵模拟性来自将张量解释为使用张量张量产物繁殖的T线性操作员。通过基础张量代数给出的张量张量产品的选择对于表示质量至关重要,到目前为止,已经启发了。该项目将开发一个统一的优化框架,以学习张量代数,并有效地表示具有隐式相关性的多路数据(即,关系未知的先验性,因此可以捕获启示性的挑战)。学识渊博的张量调整产品将引入算法优势(例如,快速评估和低存储成本),同时保留矩阵模拟框架的理论保证。 The main thrusts of this project are (1) to optimize tensor algebras by exploiting the coupling between matrix-mimetic tensor factorizations and tensor-tensor products, (2) to capture nonlinearity in multilinear algorithms by designing novel nonlinear tensor-tensor products, and (3) to extend the proposed algorithms using new, scalable strategies to increase the applicability of矩阵模拟的张量方法用于大规模多路数据应用。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,以诚实的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Newman其他文献

Image reconstructions using sparse dictionary representations and implicit, non-negative mappings
使用稀疏字典表示和隐式非负映射进行图像重建
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Newman;Jack Michael Solomon;Matthias Chung
  • 通讯作者:
    Matthias Chung
PERICARDIOCENTESIS COMPLICATED BY LEFT ANTERIOR DESCENDING ARTERY LACERATION
  • DOI:
    10.1016/s0735-1097(23)03667-7
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
  • 作者:
    Sina Salehi Omran;Rachel Roskowski;Summanther T. Anthony Kaviratne;Melissa D. Cole;Elizabeth Newman;Christopher J. Cove;Jeffrey Bruckel;Vijay K. Krishnamoorthy
  • 通讯作者:
    Vijay K. Krishnamoorthy
Antenatal education - Putting research into practice: A guideline review.
产前教育 - 将研究付诸实践:指南审查。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Alessia Ferri;Kate M. Levett;Kerry L. Sutcliffe;Christine Catling;Elizabeth Newman
  • 通讯作者:
    Elizabeth Newman
Non-negative Tensor Patch Dictionary Approaches for Image Compression and Deblurring Applications
用于图像压缩和去模糊应用的非负张量补丁字典方法
  • DOI:
    10.1137/19m1297026
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Newman;M. Kilmer
  • 通讯作者:
    M. Kilmer

Elizabeth Newman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Hopf代数方法的有限张量范畴对偶不变量的研究
  • 批准号:
    12301049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辫子张量范畴与拟三角Hopf代数的Schur乘子和中心扩张
  • 批准号:
    12301046
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Hopf代数与张量三角范畴中若干问题研究
  • 批准号:
    12271292
  • 批准年份:
    2022
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
Hopf代数与张量三角范畴中若干问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
用于量子计算的一类代数问题研究
  • 批准号:
    12126314
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
  • 批准号:
    2303334
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Homological Techniques for Noncommutative Algebras and Tensor Categories
非交换代数和张量范畴的同调技术
  • 批准号:
    2001163
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Tensor Categories and Representations of Quantized Algebras
量化代数的张量范畴和表示
  • 批准号:
    2001318
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
  • 批准号:
    2100531
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了