Developing High Order Stable and Efficient Methods for Long Time Simulations of Gravitational Waveforms

开发高阶稳定且有效的方法来长时间模拟引力波形

基本信息

  • 批准号:
    2309609
  • 负责人:
  • 金额:
    $ 34.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Gravitational waves were predicted by Einstein a century ago. Still, they had never been directly observed before the Nobel Prize-winning discovery of black hole and neutron star binary systems by the US-based Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in 2015. This detection heralded a major scientific transformation in the gravitational wave astrophysics field, which led to an urgent need for advanced computational models that will play a critical role in the future success of LIGO and upcoming space-borne missions like Laser Interferometer Space Antenna. High-accuracy gravitational wave simulations are needed to produce the expected gravitational wave signal emitted from these systems over hundreds of thousands of orbital cycles, which are required to filter noisy data. The main objective of this project is to develop new computational techniques to accurately and efficiently simulate gravitational waves that will allow scientists to maximize the scientific output of current and future detectors. These efforts open a window into the universe and capture the interest of the general public as well as a younger generation of scientists. Previous research projects by the investigators have been discussed in the general media, and this work will continue to be successful in outreach to the general public. The computational skills that the students develop are broadly applicable and, therefore, would allow them access to various career options, including in areas of urgent national need.The project aims to develop advanced mathematical and computational models to accurately simulate large-mass-ratio binary black hole systems, which are crucial for detecting gravitational waves. In particular, it will develop efficient and stable high-order methods that can handle the highly singular source terms of the s = ±2 Teukolsky model, including the development of a novel algorithm using a discontinuous Galerkin scheme and a mixed precision 2D weighted essentially non-oscillatory scheme. Work will also focus on developing high-order, positivity-preserving time-stepping methods with minimized phase and dispersion errors to enhance the accuracy of the simulations. The research outcomes will significantly impact the field of gravitational wave discoveries by enabling the modeling of highly realistic astrophysical scenarios that were previously infeasible, such as systems in which both black holes are rapidly spinning in the extreme mass ratio limit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个世纪前爱因斯坦预测了引力波。尽管如此,在2015年,基于美国的激光干涉仪重力波动仪(LIGO)检测器对诺贝尔奖获得黑洞和中性恒星二元系统的发现之前,他们从未直接观察到它们。这种检测预示着预示着在迫切需要的迫切需要的迫切需要的模型,这将导致迫在眉睫的迫在眉睫的模型,从而导致了迫切需要的关键范围,这是迫切需要的,这是迫切需要的。像激光干涉仪空间天线。需要高临界力引力波模拟,以产生从这些系统中发出的预期重力波信号,超过数十万个轨道循环,这些轨道循环需要过滤噪声数据。该项目的主要目的是开发新的计算技术,以准确有效地模拟引力波,它们将使科学家能够最大程度地提高当前和未来探测器的科学输出。这些努力为宇宙打开了一个窗口,并吸引了公众的兴趣以及年轻一代的科学家。研究人员先前的研究项目已经在通用媒体上进行了讨论,这项工作将继续与公众宣传。学生发展的计算技能广泛适用,因此,将使他们获得各种职业选择,包括在紧急国家需求的领域中。该项目旨在开发先进的数学和计算模型,以准确模拟大型质量二进制二进制黑洞系统,这对于检测引力波是至关重要的。特别是,它将开发出高效稳定的高阶方法,可以处理S =±2 Teukolsky模型的高度单数源术语,包括使用不连续的Galerkin方案开发新算法和混合精度2D加权的混合精度基本上是非激发方案。工作还将着重于开发具有最小化相位和分散误差的高阶,积极的时间步变方法,以提高模拟的准确性。研究结果将通过实现以前不可行的高度现实的天体物理场景的建模来重大影响引力波发现的领域,例如两个黑洞都在极端质量比率上迅速旋转的系统。该奖项反映了NSF的法定任务,反映了通过评估基金会和广泛的影响和广泛的支持和广泛的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Field其他文献

Scott Field的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Field', 18)}}的其他基金

Rapid, High-Fidelity Numerical Models of Gravitational Waves from Generic Binary Black Hole Mergers
通用双黑洞合并引力波的快速、高保真数值模型
  • 批准号:
    2110496
  • 财政年份:
    2021
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
High Order Numerical Methods for Gravitational Wave Computations
引力波计算的高阶数值方法
  • 批准号:
    1912716
  • 财政年份:
    2019
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
Maximizing Scientific Outcomes of Gravitational Wave Experiments with Rapid, High-Fidelity Numerical Models
通过快速、高保真数值模型最大限度地提高引力波实验的科学成果
  • 批准号:
    1806665
  • 财政年份:
    2018
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
    62003205
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
不确定非线性约束系统的有限时间命令滤波模糊控制
  • 批准号:
    61973179
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Curvilinear Grid Adaptation with Nonlinearly Stable Flux Reconstruction High-Order Methods in Split-Form
具有非线性稳定通量重建高阶分割法的曲线网格自适应
  • 批准号:
    569781-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigating, implementing and testing solutions to eliminate the drift in the resistance of ceramic thick film printed heaters in order to ensure a stable operation.
研究、实施和测试消除陶瓷厚膜印刷加热器电阻漂移的解决方案,以确保稳定运行。
  • 批准号:
    520538-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Engage Plus Grants Program
Investigating the origin of the drift in the resistance of ceramic thick film printed heaters in order to ensure a stable operation with a minimal resistance variation.
研究陶瓷厚膜印刷加热器电阻漂移的根源,以确保以最小的电阻变化稳定运行。
  • 批准号:
    508043-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Engage Grants Program
A stable, efficient and accurate high-order discretization for low Mach flows
稳定、高效、准确的低马赫流高阶离散化
  • 批准号:
    318864836
  • 财政年份:
    2016
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Research Grants
Free Surface Fluid Mechanics and Electromagnetic Scattering: Stable, High-Order Perturbation Techniques
自由表面流体力学和电磁散射:稳定的高阶扰动技术
  • 批准号:
    0537511
  • 财政年份:
    2005
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了