Conference: UCLA Synthetic Data Workshop
会议:加州大学洛杉矶分校综合数据研讨会
基本信息
- 批准号:2309349
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports participation by experts from diverse mathematical disciplines and computer science, especially graduate students and other early-career researchers, in the upcoming UCLA Synthetic Data Workshop to be held at the University of California, Los Angeles, from April 13 to April 14, 2023. The goal of the workshop is to foster the collaboration of researchers in several areas connected to synthetic data and data privacy, including differential privacy, fairness, and adversarial robustness. The rationale for this activity is that synthetic data generation is a rapidly growing and highly disciplinary research area that draws much attention. For the development of algorithmic procedures for fraud deception and spam identification, as well as for the construction of AI-driven models in manufacturing and supply chain management, synthetic data has become a valuable resource. The goal of this workshop is to investigate scientific foundations that are spawned by these advancements and examine new strategies for solving open problems. The workshop will also have a substantial pedagogical component in the form of introductory talks that will cover background and recent exciting progress in its focus areas. These talks will be accessible to non-experts, including graduate students and junior researchers.Synthetic data is especially useful when obtaining real-world data is either too costly or too risky. Recent results hint at a new and promising direction that practitioners may effectively train AI models by addressing edge scenarios and dangerous occurrences while using synthetic data. Despite numerous successful applications of synthetic data, its scientific foundation, e.g., the tradeoff among fidelity, utility, and privacy, is still missing. In addition, industrial standards for generating and utilizing synthetic data, as well as the privacy law concerning synthetic data, are yet to be established. This workshop will provide an environment for experts to exchange their ideas for open questions about synthetic data, such as whether or not privacy is lost when creating synthetic data, whether or not using synthetic data affects fairness, and how, at the most basic level, one should judge the quality and usefulness of synthetic data. The website for the workshop is https://ucla-synthetic-data.github.io/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持来自多元化数学学科和计算机科学的专家,尤其是研究生和其他早期研究人员的参与,即即将举行的UCLA合成数据研讨会,将于4月13日至2023年4月14日在加利福尼亚大学的洛杉矶大学在洛杉矶大学举行。对抗性的鲁棒性。这项活动的理由是,合成数据生成是一个快速增长且高度纪律的研究领域,引起了很多关注。为了制定用于欺诈欺诈和垃圾邮件识别的算法程序,以及在制造和供应链管理中构建AI驱动模型的构建,合成数据已成为宝贵的资源。该研讨会的目的是研究这些进步所产生的科学基础,并研究解决开放问题的新策略。该研讨会还将以介绍性演讲的形式拥有实质性的教学成分,该演讲将涵盖其重点领域的背景和令人兴奋的进步。非专家(包括研究生和初级研究人员)将可以访问这些谈判。在获得现实世界数据时,合成数据尤其有用。最近的结果暗示了一个新的有前途的方向,从业人员可以通过解决综合数据时解决边缘方案和危险事件来有效地训练AI模型。尽管合成数据的许多成功应用,但其科学基础,例如,富裕,公用事业和隐私之间的权衡仍然缺失。此外,尚待建立用于生成和利用合成数据的工业标准以及有关合成数据的隐私法。该研讨会将为专家提供一个环境,以将其思想交换为有关综合数据的开放问题,例如在创建合成数据时是否丢失了隐私,是否使用合成数据会影响公平性,以及在最基本的水平上,应该判断合成数据的质量和实用性。研讨会的网站是https://ucla-synthetic-data.github.io/.Io/.This Award反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Guang Cheng其他文献
PDA-cross-linked beta-cyclodextrin: a novel adsorbent for the removal of BPA and cationic dyes.
PDA 交联 β-环糊精:一种用于去除 BPA 和阳离子染料的新型吸附剂。
- DOI:10.2166/wst.2020.28610.2166/wst.2020.286
- 发表时间:2020-062020-06
- 期刊:
- 影响因子:2.7
- 作者:Jianyu Wang;Guang Cheng;Jian Lu;Huafeng Chen;Yanbo ZhouJianyu Wang;Guang Cheng;Jian Lu;Huafeng Chen;Yanbo Zhou
- 通讯作者:Yanbo ZhouYanbo Zhou
BadGD: A unified data-centric framework to identify gradient descent vulnerabilities
BadGD:一个以数据为中心的统一框架,用于识别梯度下降漏洞
- DOI:10.48550/arxiv.2405.1597910.48550/arxiv.2405.15979
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:ChiHua Wang;Guang ChengChiHua Wang;Guang Cheng
- 通讯作者:Guang ChengGuang Cheng
Community-base Fault Diagnosis Using Incremental Belief Revision
使用增量置信修正进行基于社区的故障诊断
- DOI:10.1109/nas.2009.2410.1109/nas.2009.24
- 发表时间:20092009
- 期刊:
- 影响因子:0
- 作者:Yongning Tang;Guang Cheng;Zhiwei Xu;E. AlYongning Tang;Guang Cheng;Zhiwei Xu;E. Al
- 通讯作者:E. AlE. Al
Identifying Video Resolution from Encrypted QUIC Streams in Segment-combined Transmission Scenarios
分段组合传输场景下加密QUIC流视频分辨率识别
- DOI:10.1145/3651863.365188310.1145/3651863.3651883
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Yuanjie Zhao;Hua Wu;Liujinhan Chen;Songtao Liu;Guang Cheng;Xiaoyan HuYuanjie Zhao;Hua Wu;Liujinhan Chen;Songtao Liu;Guang Cheng;Xiaoyan Hu
- 通讯作者:Xiaoyan HuXiaoyan Hu
RBAS: A Real-Time User Behavior Analysis System for Internet TV in Cloud Computing
RBAS:云计算下的互联网电视实时用户行为分析系统
- DOI:10.1145/2935663.293566410.1145/2935663.2935664
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:C. Zhu;Guang Cheng;Xiaojun Guo;Yuxiang WangC. Zhu;Guang Cheng;Xiaojun Guo;Yuxiang Wang
- 通讯作者:Yuxiang WangYuxiang Wang
共 62 条
- 1
- 2
- 3
- 4
- 5
- 6
- 13
Guang Cheng的其他基金
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:22477952247795
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Continuing GrantContinuing Grant
I-Corps: Trustworthy Synthetic Data Generation
I-Corps:值得信赖的综合数据生成
- 批准号:23175492317549
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
- 批准号:17129071712907
- 财政年份:2017
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
- 批准号:14182021418202
- 财政年份:2014
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Standard GrantStandard Grant
CAREER: Bootstrap M-estimation in Semi-Nonparametric Models
职业:半非参数模型中的 Bootstrap M 估计
- 批准号:11516921151692
- 财政年份:2012
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Continuing GrantContinuing Grant
General Semiparametric Inference via Bootstrap Sampling
通过 Bootstrap 采样进行一般半参数推理
- 批准号:09064970906497
- 财政年份:2009
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Standard GrantStandard Grant
相似海外基金
Primary care quality for older adults: practice-based quality measures derived from a RAND/UCLA appropriateness method study
老年人初级保健质量:源自兰德/加州大学洛杉矶分校适当性方法研究的基于实践的质量衡量标准
- 批准号:495174495174
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:
SPIGELMAN (UCLA) - MCSP- EXPLORATORY CHEMISTRY (EC)
SPIGELMAN(加州大学洛杉矶分校)- MCSP-探索化学(EC)
- 批准号:1094938910949389
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:
UCLA Child Health Research Career Development Award
加州大学洛杉矶分校儿童健康研究职业发展奖
- 批准号:1059842810598428
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:
UCLA Pediatric Research Education Program in Bioinformatics, Computational Biology, and Omics
加州大学洛杉矶分校生物信息学、计算生物学和组学儿科研究教育项目
- 批准号:1062906110629061
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:
Conference: Logic Meeting at UCLA
会议:加州大学洛杉矶分校的 Logic 会议
- 批准号:23023082302308
- 财政年份:2023
- 资助金额:$ 1.5万$ 1.5万
- 项目类别:Standard GrantStandard Grant